As a reliable and scalable precursor of graphene, graphene oxide (GO) is of great importance. However, the environmentally hazardous heavy metals and poisonous gases, explosion risk and long reaction times involved in the current synthesis methods of GO increase the production costs and hinder its real applications. Here we report an iron-based green strategy for the production of single-layer GO in 1 h. Using the strong oxidant K2FeO4, our approach not only avoids the introduction of polluting heavy metals and toxic gases in preparation and products but also enables the recycling of sulphuric acid, eliminating pollution. Our dried GO powder is highly soluble in water, in which it forms liquid crystals capable of being processed into macroscopic graphene fibres, films and aerogels. This green, safe, highly efficient and ultralow-cost approach paves the way to large-scale commercial applications of graphene.
A new approach to flow battery design is demonstrated wherein diffusion-limited aggregation of nanoscale conductor particles at ~1 vol% concentration is used to impart mixed electronic-ionic conductivity to redox solutions, forming flow electrodes with embedded current collector networks that self-heal after shear. Lithium polysulfide flow cathodes of this architecture exhibit electrochemical activity that is distributed throughout the volume of flow electrodes rather than being confined to surfaces of stationary current collectors. The nanoscale network architecture enables cycling of polysulfide solutions deep into precipitation regimes that historically have shown poor capacity utilization and reversibility, and may thereby enable new flow battery designs of higher energy density and lower system cost. Lithium polysulfide half-flow cells operating in both continuous and intermittent flow mode are demonstrated for the first time.
Macroscopic assembled, self-standing graphene and graphene oxide (GO) films have been demonstrated as promising materials in many emerging fields, such as Li ion battery electrodes, supercapacitors, heat spreaders, gas separation, and water desalination. Such films were mainly available on centimeter-scale via the time-and energyconsuming vacuum-filtration method, which seriously impedes their progress and large-scale applications. Due to the incompatibility between large-scale and ordered assembly structures, it remains a big challenge to access large-area assembled graphene thick films. Here, we report for the first time a fast wet-spinning assembly strategy to produce continuous GO and graphene thick films. A 20 m long, 5 cm wide, well-defined GO film was readily achieved at a speed of 1 m min −1 . The continuous, strong GO films were easily woven into bamboo-mat-like fabrics and scrolled into highly flexible continuous fibers. The reduced graphene films with high thermal and moderate electrical conductivities were directly used as fast-response deicing electrothermal mats. The fast yet controllable wet-spinning assembly approach paves the way for industrial-scale utilization of graphene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.