Journal of Wood Chemistry and TechnologyPublication details, including instructions for authors and subscription information: Abstract: By varying cooking temperature, alkali charge, ionic strength, and cooking time in Kraft pulping of spruce chips, pulps ranging between kappa numbers 20-80 were obtained. The unbleached Kraft pulp fibers were subjected to mechanical peeling in order to separate the surface material from the bulk of the fibers and the carbohydrate composition and lignin content of the two fractions were analyzed. As expected, the lignin and xylan contents were higher on the fiber surface than in the fiber wall. The percentage of xylan on the fiber surface was fairly constant, independent of different pulping conditions or degree of delignification. The lignin proportion on the fiber surface gradually decreased with decreasing kappa number. At a given kappa number, pulping at a higher temperature resulted in less lignin on the fiber surface, probably because of the higher solubility of lignin at higher temperature. Cooking at lower alkali charge also resulted in lower lignin content on the fiber surface at a given kappa number. In this case, there was more time available for degradation of the surface lignin since the lower alkali charge resulted in longer cooking time needed to reach a certain kappa number.
The aim of the study was to investigate the possibility to use spruce xylan more efficiently by possible relocation of dissolved xylan with certain characteristics from the first part of the kraft cooking to the later part, when precipitation occur. The characteristics of re-located xylan was controlled by replacing half the black liquor (BL) at a late stage of a kraft cook, with the same amount of black liquor containing spruce xylan with known molecular weight and content of uronic acid (UA). Pulp with addition of xylan with high amount of UA groups responded strongly on beating, resulting in improved tensile strength. It is proposed that the best effect of xylan on tensile strength occurs when the xylan penetrates some distance into the subsurface of the fiber wall. Both low molecular weight (M w )and a high degree of substitution decreases the tendency of xylan to aggregate, which enables the dissolved xylan to penetrate some distance into the exposed fiber surface. Upon beating, this xylan will be exposed thus facilitating improved fiber-fiber joint formation, which leads to increased tensile strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.