Some drugs can be used to treat multiple diseases, suggesting potential patterns in drug treatment. Determination of drug treatment patterns can improve our understanding of the mechanisms of drug action, enabling drug repurposing. A drug can be associated with a multilayer tissue-specific protein–protein interaction (TSPPI) network for the diseases it is used to treat. Proteins usually interact with other proteins to achieve functions that cause diseases. Hence, studying drug treatment patterns is similar to studying common module structures in multilayer TSPPI networks. Therefore, we propose a network-based model to study the treatment patterns of drugs. The method was designated SDTP (studying drug treatment pattern) and was based on drug effects and a multilayer network model. To demonstrate the application of the SDTP method, we focused on analysis of trichostatin A (TSA) in leukemia, breast cancer, and prostate cancer. We constructed a TSPPI multilayer network and obtained candidate drug-target modules from the network. Gene ontology analysis provided insights into the significance of the drug-target modules and co-expression networks. Finally, two modules were obtained as potential treatment patterns for TSA. Through analysis of the significance, composition, and functions of the selected drug-target modules, we validated the feasibility and rationality of our proposed SDTP method for identifying drug treatment patterns. In summary, our novel approach used a multilayer network model to overcome the shortcomings of single-layer networks and combined the network with information on drug activity. Based on the discovered drug treatment patterns, we can predict the potential diseases that the drug can treat. That is, if a disease-related protein module has a similar structure, then the drug is likely to be a potential drug for the treatment of the disease.
Recently, fluorine materials have been a serious cause of environmental concern. In response, a novel fluorine-free superhydrophobic coating is presented in this paper. A superhydrophobic coating based on silicone and surface-modified colloidal silica is explored and exploited. First, a superhydrophobic coating, based on silicone resins and fluorine group-modified colloidal silica, is developed. Then, the fluorine group-modified colloidal silica is replaced by octyl-modified colloidal silica, a superhydrophobic coating based on fluorine-free materials, octyl-functionalized colloidal silica, and epoxy-modified silicone. The hydrophobicity and coating integrity were investigated, and the fluorine-free coating shows good superhydrophobicity and coating integrity. The result demonstrates the feasibility of a fluorine-free superhydrophobic coating, thus providing an effective solution to the environmental problems caused by fluorine chemicals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.