BackgroundHuman papillomavirus type-16 (HPV-16) E2 protein acts as a transcriptional modulator and plays a key role in regulating many biological responses. The purpose of this study was to investigate the relationship between HPV-16 E2, the receptor for the globular heads of human C1q (gC1qR) gene expression, mitochondrial dysfunction and apoptosis regulation in human cervical squamous carcinoma cells (C33a and SiHa).MethodsHPV-16 E2 and gC1qR expression was examined using real-time PCR and western blot analysis. Apoptosis in C33a and SiHa cells was assessed by flow cytometry. Mitochondrial function was detected via ROS generation, the amount of cytosolic Ca2+, and changes in the mitochondrial membrane potential (Δψm).ResultsThe expression of the HPV-16 E2 and gC1qR gene significantly decreased in human cervical squamous carcinoma samples relative to the non-cancerous cervix samples. C33a and SiHa cells that were transfected with a vector encoding HPV-16 E2 displayed significantly increased gC1qR gene expression and mitochondrial dysfunction as well as an up-regulation of cellular apoptosis, which was abrogated by the addition of gC1qR small-interfering RNA (siRNA).ConclusionsThese data support a mechanism whereby gC1qR plays an important role in HPV-16 E2-induced human cervical squamous carcinoma cell apoptosis via a mitochondria-dependent pathway.Electronic supplementary materialThe online version of this article (doi:10.1186/s12967-014-0286-y) contains supplementary material, which is available to authorized users.
BackgroundThe globular heads of the human C1q receptor (gC1qR) localize predominantly to the mitochondrial matrix. gC1qR mediates many biological responses, including growth perturbation, morphological abnormalities and the initiation of apoptosis. The purpose of this study was to investigate the relationship between mitochondrial dysfunction, p53 status and gC1qR expression and the regulation of apoptosis in human cervical squamous carcinoma cells (C33a and SiHa).MethodsHere, gC1qR expression was examined in human cervical tissues using real-time PCR and Western blot analysis. Apoptotic death of C33a and SiHa cells was assessed by flow cytometric analysis that detected the subG1 population. Mitochondrial function was assessed via ROS generation, the content of cytosolic Ca2+, and the change in mitochondrial membrane potential (Δψm). The viability and migration of C33a and SiHa cells were detected via the water-soluble tetrazolium salt (WST-1) assay and the transwell assay, respectively.ResultsgC1qR expression was decreased in cervical squamous cell carcinoma tissues compared with normal tissues. C33a and SiHa cells transfected with a vector encoding gC1qR displayed mitochondrial dysfunction and apoptosis, which was abrogated by the addition of a mutant form of p53 or p53 small interference RNA (siRNA). Furthermore, upon overexpression of gC1qR, cell viability and migration were significantly enhanced, and the apoptosis of C33a and SiHa cells were decreased when cells were treated with mutant p53 or p53 siRNA.ConclusionsThese data support a mechanism whereby gC1qR induces apoptosis through the mitochondrial and p53-dependent pathways in cervical squamous cell carcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.