BackgroundBladder cancer (BCa) is the most common malignancy of the urinary tract which can be divided into non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC), and their microbial differences are not fully understood. This study was conducted by performing 2bRAD sequencing for Microbiome (2bRAD-M) on NMIBC and MIBC tissue samples to investigate the microbiota differences between NMIBC and MIBC individuals.MethodsA total of 22 patients with BCa, including 7 NMIBC and 15 MIBC, were recruited. Tumor tissues were surgically removed as samples and DNA was extracted. Type IIB restriction endonucleases were used to enzymatically cleave the microbial genome for each microbe’s tag and map it to species-specific 2bRAD markers to enable qualitative and quantitative studies of microbes between MIBC and NMIBC tissues.ResultsA total of 527 species were detected. The microbial diversity of NMIBC tissues was significantly higher than that of MIBC tissues. Microbial composition of the two tumor tissues was similar, where Ralstonia_sp000620465 was the most dominant species. 4 species (Acinetobacter_guillouiae, Anoxybacillus_A_rupiensis, Brevibacillus_agri and Staphylococcus_lugdunensis) were enriched in NMIBC, while Ralstonia_mannitolilytica, Ralstonia_pickettii, and Ralstonia_sp000620465 were overrepresented in MIBC. 252 discriminatory character taxa were also revealed by linear discriminant analysis effect sizea (LEfSe). Species importance point plots identified Ralstonia_sp000620465, Cutibacterium_acnes and Ralstonia_pickettii as the three most important species between the two groups. Meanwhile, functional annotation analysis showed 3011 different COGs and 344 related signaling pathways between MIBC and NMIBC microbiome.ConclusionThis first 2bRAD-M microbiome study on MIBC and NMIBC tissues revealed significant differences in the microbial environment between the two groups, which implies a potential association between tumor microbial dysbiosis and BCa, and provides a possible target and basis for subsequent studies on the mechanisms of BCa development and progression.
As the oil and gas fields enjoy a longer and longer production life, casing damaged wells in oil and gas fields increase year by year in number. Assets are at expense, costs are incr eased, and production is threatened. In this paper, the status and mechanism of casing failures in China, USA and Russia are investigated; factors and prevention and intervention measures ar e analyzed; casing failure types, intervals, times and causing factors are studied; failure charact eristics and causes types of mature oilfields are compared and evaluated; and for each different-factor that causes casing failure a corresponding prevention or intervention method is suggested. The studies on casing failure mechanism, detection technology and modeling by overseas countries are worth of reference, and correlative technologies are significant guidance for casing failure prevention and control in our mature oilfields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.