Bone defect repair remains a challenge in orthopedics. This study describes the development and potential effectiveness of vascular endothelial growth factor (VEGF)/bone morphogenetic protein-2 (BMP-2) shell-core microspheres for promoting bone regeneration. Poly(L-lactic acid)/polylactic-co-glycolic acid (PLLA/PLGA) core-shell microspheres loaded with VEGF and BMP-2 were prepared by a coaxial electrospray technique, and their surface morphology, core-shell distribution, and particle size were examined. Different groups of microspheres were prepared with different placement of the growth factors, and the encapsulation efficiency and in vitro release curves were measured. Additionally, the effects of the different groups of microspheres on the proliferation and differentiation of osteoblasts and vascular endothelial cells were investigated. The prepared microspheres had a core-shell structure with good homogeneity and dispersion, a clear boundary, and a smooth surface. On scanning electron microscopy, the mean diameter of the microspheres was similar for all six preparations ( P > 0.05 ). During in vitro release, growth factor was initially released via a brief burst release from the outer shell of the microsphere followed by a slower sustained release. The release of growth factors from the inner core remained relatively slow and sustained. Sequential release of different growth factors was achieved through the inconsistent release rates from the microsphere shell and inner core. All groups of microspheres showed no cytotoxicity, good biocompatibility, and the ability to promote osteoblast proliferation. The microspheres loaded with BMP-2 also promoted osteoblast differentiation, and VEGF-loaded microspheres promoted the proliferation and differentiation of vascular endothelial cells. The BMP-2 (core)/VEGF (shell) microsphere group best promoted osteoblast differentiation. The microspheres prepared in this study exhibited slow sequential release of BMP-2 and VEGF and showed good biocompatibility along with the ability to promote osteoblast differentiation and vascular endothelial cell proliferation.
The effect of titanium scaffold geometry on the bone regeneration ability of the scaffold remains unclear. Here, selective laser melting as a 3D printing technology was used to create porous titanium alloy scaffolds with two unit structures: a hollow hexagonal prism (group A) and a hollow triangular prism (group B). The structures and morphologies of the scaffolds were characterized before mechanical properties were simulated. Cell adhesion behaviors, osteoblast activity and proliferation, and alkaline phosphatase (ALP) activity were evaluated, in addition to in vivo testing in an animal model. The results showed that the two scaffolds made of Ti6Al4V had compression moduli similar to that of human cortical bone ( 116.91 ± 0.01 and 174.29 ± 2.21 MPa vs. 89–164 MPa). The two scaffolds were nontoxic to cells and had good biocompatibility, while group A scaffolds facilitated cell adhesion. The number of cells increased gradually in culture. The ALP activity of cells on group A scaffolds demonstrated higher osteogenic ability than that of group B scaffolds. The in vivo tests showed that all scaffolds retained their shape well after implantation, and no obvious inflammatory reaction or infection in surrounding tissues was found. Based on fluorescence staining, mature new bone formation was found at week 12. Group A scaffolds showed better bone integration ability compared with group B scaffolds. The percentage of new bone area in group A (7.5%) was higher than that in group B (6.5%). This research suggests that the hollow hexagonal prism structure of porous scaffolds can promote osteogenic differentiation and osseointegration better than the triangular prism structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.