Band gap engineering of atomically thin two-dimensional (2D) materials is the key to their applications in nanoelectronics, optoelectronics, and photonics. Here, for the first time, we demonstrate that in the 2D system, by alloying two materials with different band gaps (MoS2 and WS2), tunable band gap can be obtained in the 2D alloys (Mo(1-x)W(x)S(2) monolayers, x = 0-1). Atomic-resolution scanning transmission electron microscopy has revealed random arrangement of Mo and W atoms in the Mo(1-x)W(x)S(2) monolayer alloys. Photoluminescence characterization has shown tunable band gap emission continuously tuned from 1.82 eV (reached at x = 0.20) to 1.99 eV (reached at x = 1). Further, density functional theory calculations have been carried out to understand the composition-dependent electronic structures of Mo(1-x)W(x)S(2) monolayer alloys.
It has long been noticed that special lattices contain single-electron flat bands (FB) without any dispersion. Since the kinetic energy of electrons is quenched in the FB, this highly degenerate energy level becomes an ideal platform to achieve strongly correlated electronic states, such as magnetism, superconductivity and Wigner crystal. Recently, the FB has attracted increasing interests, because of the possibility to go beyond the conventional symmetry-breaking phases, towards topologically ordered phases, such as lattice versions of fractional quantum Hall states. This article reviews different aspects of FBs in a nutshell. Starting from the standard band theory, we aim to bridge the frontier of FBs with the textbook solid-state physics. Then, based on concrete examples, we show the common origin of FBs in terms of destructive interference, and discuss various many-body phases associated with such a singular band structure. In the end, we demonstrate real FBs in quantum frustrated materials and organometallic frameworks.
Dinitrogen conversion to ammonia via electrochemical reduction with over 10% Faradaic efficiency is demonstrated in this work. Co-doped MoS 2-x polycrystalline nanosheets with S vacancies as the catalysts are loaded onto carbon cloth by hydrothermal growth from Mo, Co, and S precursors. A sulfur vacancy on the MoS 2-x basal plane mimicking the natural Mo-nitrogenase active site is modified by Co doping and exhibits superior dinitrogen-to-ammonia conversion activity. Density-functional simulation reveals that the free energy barrier, which can be compensated by applied overpotential, is reduced from 1.62 to 0.59 eV after Co doping. Meanwhile, dinitrogen tends to be chemically adsorbed to defective MoS 2-x , which effectively activates the dinitrogen molecule for the dissociation of the NN triple bond. This process is further accelerated by Co doping, resulting from the modulation of Mo−N bonding configuration.
Materials, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. It incorporates referee's comments but changes resulting from the publishing process, such as copyediting,
The recent discovery of ferromagnetic single-layer CrI creates ample opportunities for studying the fundamental properties and the spintronic applications of atomically thin magnets. Through first-principles calculations and model Hamiltonian simulations, here we build for the first time a substantial magnetic phase diagram under lateral strain and charge doping, the two factors that are easily modulated in single-layer CrIvia substrate and gating controls. We demonstrate that both lateral strain and charge doping efficiently change the coupling between the local spins and thus have unexpected effects on the magnetic properties of CrI. In particular, the strain tunes the magnetic order and anisotropy: a compressive strain leads to a phase transition from a ferromagnetic insulator to an antiferromagnetic insulator, while a tensile strain can flip the magnetic orientation from off-plane to in-plane. Furthermore, we find that the phase transition under compressive strain is insensitive to charge doping, whereas the phase transition under tensile strain is modulated by electron doping significantly. Our predicted magnetic phase diagram and rationalized analysis indicate the single-layer CrI to be an ideal system to harness both basic magnetic physics and building blocks for magnetoelastic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.