The interconnection of microRNAs (miRNAs) and metal ions governs multiple biological processes in disease development and progression. However, developing multiplexed tools for dynamic imaging of these regulators remains a significant challenge. Herein, we report a conceptual approach for the design of an optically controlled DNA nanomachine by introducing a ternary DNAzyme-based, UV light-cleavable DNA scaffold and upconversion nanoparticle to the activatable hybrid chain reaction. We demonstrate that this nanomachine is capable of being effectively operated either in the presence of an endogenous miRNA target or the coexistence of intracellular Zn 2+ and external near-infrared light, resulting in enhanced fluorescence resonance energy transfer signals. With this design, the logic-gated imaging of endogenous miR-21 and Zn 2+ is demonstrated in living cells. More importantly, taking advantages of photoacoustic imaging modality, a combinational logic circuit (AND/OR) is constructed for the bioorthogonal cascade imaging of miR-21 and Zn 2+ in vivo, realizing dynamic monitoring of the correlation of miRNA and metal ions levels. Collectively, our results suggest that this conceptual design possesses the ability to expand the DNA nanomachine toolbox for visualizing a broad spectrum of interconnected molecules and thus provides new perspectives to improve the diagnostic and therapeutic outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.