Plasma sheath poses a serious challenge to inverse synthetic aperture radar (ISAR) imaging of hypersonic targets. This paper investigated the distribution characteristics of the electron density and velocity field in the plasma sheath surrounding the hypersonic target in various flight scenes. The incident depth and reflective surface of electromagnetic (EM) waves with X-band, Ku-band, and Ka-band can be determined based on the plasma frequency. We established the echo model coupled with the velocity field of the plasma sheath on the reflective surface and obtained one-dimensional range profiles and ISAR images of the hypersonic target in various flight scenes. The simulation results indicated that the non-uniform velocity field on the reflective surface induced displacement and diffusion in the one-dimensional range profile, resulting in ISAR image distortion. A changing flight scene and radar frequency can have an impact on imaging results. Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) were utilized to assess the impact of plasma sheath on ISAR images. This study revealed the defocus mechanism of the ISAR image caused by the velocity field of the plasma sheath and provided a theoretical reference for the selection of radar frequency for hypersonic targets in various flight scenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.