An urgent problem in controlling COVID-19 spreading is to understand the role of undocumented infection. We develop a five-state model for COVID-19, taking into account the unique features of the novel coronavirus, with key parameters determined by the government reports and mathematical optimization. Tests using data from China, South Korea, Italy, and Iran indicate that the model is capable of generating accurate prediction of the daily accumu-1
According to the official report, the first case of COVID-19 and the first death in the United States occurred on January 20 and February 29, 2020, respectively. On April 21, California reported that the first death in the state occurred on February 6, implying that community spreading of COVID-19 might have started earlier than previously thought. Exactly what is time ZERO, i.e., when did COVID-19 emerge and begin to spread in the US and other countries? We develop a comprehensive predictive modeling framework to address this question. Using available data of confirmed infections to obtain the optimal values of the key parameters, we validate the model and demonstrate its predictive power. We then carry out an inverse inference analysis to determine time ZERO for ten representative States in the US, plus New York city, UK, Italy, and Spain. The main finding is that, in both the US and Europe, COVID-19 started around the new year day.
Symmetries are fundamental to dynamical processes in complex networks such as cluster synchronization, which have attracted a great deal of current research. Finding symmetric nodes in large complex networks, however, has relied on automorphism groups in algebraic group theory, which are solvable in quasipolynomial time. We articulate a conceptually appealing and computationally extremely efficient approach to finding and characterizing all symmetric nodes by introducing a structural position vector (SPV) for each and every node in the network. We prove mathematically that nodes with the identical SPV are symmetrical to each other. Utilizing six representative complex networks from the real world, we demonstrate that all symmetric nodes can be found in linear time, and the SPVs can not only characterize the similarity of nodes but also quantify the nodal influences in spreading dynamics on the network. Our SPV-based framework, in additional to being rigorously justified, provides a physically intuitive way to uncover, understand and exploit symmetric structures in complex networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.