An investigation based on experimental and analytical approaches was conducted to evaluate the behavior of the stitched laminates under hygrothermal conditions. Tensile strength of laminates under different environmental conditions was predicted using FEM model. Effects of stitching parameters upon strength performance of laminates were studied using FEM model and validity of results was checked by comparing with the experimental results. Test results have shown that hygrothermal environment condition has no significant effect on the tensile strength of unstitched laminates, but improved the strength of stitched laminates significantly. Stitching decreased the tensile strength of laminates under 20°C dry environment; however, it improved the tensile strength under 20°C wet environment. It was also found from analytical results that, the failure strength of stitched laminates is higher for smaller thread radius (R<0.25) and relatively greater (5~6mm) stitching distance (5~6mm).
Variable airship is an important research direction because it can overcome the difficulties in climbing phase caused by huge volume, and can also solve the problem of insufficient strength. The requirements of variation bring significant challenges for the airship structural design. In this paper, a radial variation mechanism was proposed based on an existing airship. The mechanism can achieve a continuous variation of the cross-sectional area from 100 to 7.2 percent. The airship structure was analyzed using the finite element method to make sure the airship has a high safety margin in various conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.