This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design.
Inspired by the formulation of quantum-electrodynamical time-dependent density functional theory (QED-TDDFT) by Rubio and co-workers [Flick et al., ACS Photonics 6, 2757-2778 (2019)], we propose an implementation that uses dimensionless amplitudes for describing the photonic contributions to QED-TDDFT electron–photon eigenstates. This leads to a Hermitian QED-TDDFT coupling matrix that is expected to facilitate the future development of analytic derivatives. Through a Gaussian atomic basis implementation of the QED-TDDFT method, we examined the effect of dipole self-energy, rotating-wave approximation, and the Tamm–Dancoff approximation on the QED-TDDFT eigenstates of model compounds (ethene, formaldehyde, and benzaldehyde) in an optical cavity. We highlight, in the strong coupling regime, the role of higher-energy and off-resonance excited states with large transition dipole moments in the direction of the photonic field, which are automatically accounted for in our QED-TDDFT calculations and might substantially affect the energies and compositions of polaritons associated with lower-energy electronic states.
Recently, Wang and coworkers carried out frontier molecule orbital engineering in the design of m-Cz-BNCz, a thermally-activated delayed fluorescence (TADF) molecule that emits pure green light at an external quantum efficiency of 27%. To further understand the underlying molecular design principles, we employed four advanced electronic structure analysis tools. Firstly, an absolutely localized molecular orbitals (ALMO)-based analysis indicates an anti-bonding combination between the highest occupied molecular orbitals (HOMOs) of the donor 3,6-di-tertbutylcarbazole fragment and the acceptor BNCz fragment, which raises the HOMO energy and red-shifts the fluorescence emission wavelength. Secondly, excitation energy component analysis reveals that the S 1 -T 1 gap is dominated by two-electron components of the excitation energies. Thirdly, charge transfer number analysis, which is extended to use fragment-based Hirshfeld weights, indicates that the S 1 and T 1 excited states of m-Cz-BNCz (within timedependent density functional theory) have notable charge transfer characters (27% for S 1 and 12% for T 1 ). This provides a balance between a small single-triplet gap and a substantial fluorescence intensity. Lastly, a vibrational reorganization energy analysis pinpoints the torsional motion between the BNCz and Cz moieties of m-Cz-BNCz as the source for its wider emission peak than that of p-Cz-BNCz. These four types of analyses are expected to be very valuable in the study and design of other TADF and functional dye molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.