Most clays, either naturally deposited or man-made, possess a certain degree of overconsolidation owing to tamping, cyclic loading, erosion, excavation, and/or changes in groundwater tables. An easy-to-use constitutive model for overconsolidated clays is useful for relevant engineering applications. In this paper, a simple model is proposed for overconsolidated clays based on the unified-hardening (UH) model. To evaluate the potential peak stress ratio of overconsolidated clays, a parabolic Hvorslev envelope rather than a straight envelope (used in the original UH model) is adopted. The proposed parabolic Hvorslev envelope passes through the origin of the mean stress-deviatoric stress plane. It has a slope of 3 as the overconsolidation ratio (OCR) approaches infinity and intersects with the critical state line as the OCR reaches unity. This modification leads to more realistic predictions for highly overconsolidated clays than does the original UH model with a straight Hvorslev envelope and is consistent with the critical state soil mechanics in which the higher peak stress ratio in overconsolidated clays is a result of interlocking (or dilatancy) rather than cohesion. The modified UH model retains the same parameters as those in the modified Cam-clay model. Reasonable agreement between the model predictions and experimental data demonstrates that the modified model is capable of addressing the fundamental behavior of overconsolidated clays. The present model is developed for reconstituted clays with an isotropic fabric. The potential improvement of the model, taking into account anisotropy and structural effects, is discussed.
Stratigraphic uncertainty is widely present in nature, but it has not been well considered in the stability analysis of unsaturated soil slopes in the past. In this study, the stability of the unsaturated soil slope is evaluated based on borehole data considering stratigraphic uncertainty. Firstly, an enhanced coupled Markov chain model is used to simulate stratigraphic uncertainty. Then, a finite element algorithm for automatically calculating the safety factor (FS) and the average groundwater table (AGT) of the unsaturated soil slope is developed. At last, a hypothetical slope located in the stratum from Perth, West Australia is analyzed using the proposed algorithm under different borehole schemes. The results show that with the increase in the borehole number, the statistics of FS and AGT will not monotonically increase or decrease. But the trend is that the mean values of FS and AGT gradually approach and eventually converge to the real values, and the standard deviations of FS and AGT decrease. There is a linear relationship between the standard deviation of FS (or AGT) and the average information entropy. The FS and AGT are negatively correlated considering stratigraphic uncertainty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.