Text classification and generation are two important tasks in the field of natural language processing. In this paper, we deal with both tasks via Variational Autoencoder, which is a powerful deep generative model. The self-attention mechanism is introduced to the encoder. The modified encoder extracts the global feature of the input text to produce the hidden code, and we train a neural network classifier based on the hidden code to perform the classification. On the other hand, the label of the text is fed into the decoder explicitly to enhance the categorization information, which could help with text generation. The experiments have shown that our model could achieve competitive classification results and the generated text is realistic. Thus the proposed integrated deep generative model could be an alternative for both tasks.
Shape completion is an important task in the field of image processing. An alternative method is to capture the shape information and finish the completion by a generative model, such as Deep Boltzmann Machine. With its powerful ability to deal with the distribution of the shapes, it is quite easy to acquire the result by sampling from the model. In this paper, we make use of the hidden activation of the DBM and incorporate it with the convolutional shape features to fit a regression model. We compare the output of the regression model with the incomplete shape feature in order to set a proper and compact mask for sampling from the DBM. The experiment shows that our method can obtain realistic results without any prior information about the incomplete object shape.
The neural autoregressive distribution estimator(NADE) is a competitive model for the task of density estimation in the field of machine learning. While NADE mainly focuses on the problem of estimating density, the ability for dealing with other tasks remains to be improved. In this paper, we introduce a simple and efficient reweighted scheme to modify the parameters of the learned NADE. We make use of the structure of NADE, and the weights are derived from the activations in the corresponding hidden layers. The experiments show that the features from unsupervised learning with our reweighted scheme would be more meaningful, and the performance of the initialization for neural networks has a significant improvement as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.