In our previous study, we demonstrated that episomal vectors based on the characteristic sequence of matrix attachment regions (MARs) and containing the cytomegalovirus (CMV) promoter allow transgenes to be maintained episomally in Chinese hamster ovary (CHO) cells. However, the transgene expression was unstable and the number of copies was low. In this study, we focused on enhancers, various promoters and promoter variants that could improve the transgene expression stability, expression magnitude (level) and the copy number of a MAR‐based episomal vector in CHO‐K1 cells. In comparison with the CMV promoter, the eukaryotic translation elongation factor 1 α (EF‐1α, gene symbol EEF1A1) promoter increased the transfection efficiency, the transgene expression, the proportion of expression‐positive clones and the copy number of the episomal vector in long‐term culture. By contrast, no significant positive effects were observed with an enhancer, CMV promoter variants or CAG promoter in the episomal vector in long‐term culture. Moreover, the high‐expression clones harbouring the EF‐1α promoter tended to be more stable in long‐term culture, even in the absence of selection pressure. According to these findings, we concluded that the EF‐1α promoter is a potent regulatory sequence for episomal vectors because it maintains high transgene expression, transgene stability and copy number. These results provide valuable information on improvement of transgene stability and the copy number of episomal vectors.
Chinese hamster ovary (CHO) cells have become the most widely utilized mammalian cell line for the production of recombinant proteins. However, the product yield and transgene instability need to be further increased and solved. In this study, we investigated the effect of five different introns on transgene expression in CHO cells. hCMV intron A, adenovirus tripartite leader sequence intron, SV40 intron, Chinese hamster EF‐1alpha gene intron 1 and intervening sequence intron were cloned downstream of the eGFP expression cassette in a eukaryotic vector, which was then transfected into CHO cells. qRT‐PCR and flow cytometry were used to explore eGFP expression levels. And gene copy number was also detected by qPCR, respectively. Furthermore, the erythropoietin (EPO) protein was used to test the selected more strong intron. The results showed that SV40 intron exhibited the highest transgene expression level among the five compared intron elements under transient and stable transfections. In addition, the SV40 intron element can increase the ratio of positive colonies and decrease the coefficient of variation in transgene expression level. Moreover, the transgene expression level was not related to the gene copy number in stable transfected CHO cells. Also, the SV40 intron induced higher level of EPO expression than IVS intron in transfected CHO cell. In conclusion, SV40 intron is a potent strong intron element that increases transgene expression, which can readily be used to more efficient transgenic protein production in CHO cells.
Low-level and unstable transgene expression are common issues using the CHO cell expression system. Matrix attachment regions (MARs) enhance transgene expression levels, but additional research is needed to improve their function and to determine their mechanism of action. MAR-6 from CHO chromosomes actively mediates high and consistent gene expression. In this study, we compared the effects of two new MARs and MAR-6 on transgene expression in recombinant CHO cells and found one potent MAR element that can significantly increase transgene expression. Two MARs, including the human CSP-B MAR element and DHFR intron MAR element from CHO cells, were cloned and inserted downstream of the poly(A) site in a eukaryotic vector. The constructs were transfected into CHO cells, and the expression levels and stability of eGFP were detected by flow cytometry. The three MAR sequences can be ranked in terms of overall eGFP expression, in decreasing order, as follows: human CSP-B, DHFR intron MAR element and MAR-6. Additionally, as expected, the three MAR-containing vectors showed higher transfection efficiencies and transient transgene expression in comparison with those of the non-MAR-containing vector. Bioinformatics analysis indicated that the NFAT and VIBP elements within MAR sequences may contribute to the enhancement of eGFP expression. In conclusion, the human CSP-B MAR element can improve transgene expression and its effects may be related to the NFAT and VIBP elements.
Recent years have seen the use of recombinant proteins in the treatment of different diseases. Among them, monoclonal antibodies (mAbs) are currently the fastest growing class of bio-therapeutic recombinant proteins. Chinese hamster ovary (CHO) cells are the most commonly used host cells for production of these recombinant mAbs. Expression vectors determine the expression level and quality of recombinant mAbs. Currently, few construction strategies for recombinant mAbs expression vectors in CHO cells have been developed, including monocistronic vector, multiple-promoter expression vector, and tricistronic vector mediated by internal ribosome entry site (IRES) or Furin-2A element. Among them, Furin-2A-mediated vector is an effective approach due to advantages of high "self-cleavage" efficiency, and equal expression of light and heavy chains from a single open reading frame. Here, we have reviewed the progress in development of different strategies for constructing recombinant mAb expression vectors in CHO cells and its potential advantages and disadvantages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.