The coronavirus disease (COVID-19) pandemic has greatly altered peoples’ daily lives, and it continues spreading as a crucial concern globally. Knowledge, attitudes, and practices (KAP) toward COVID-19 are related to individuals’ adherence to government measures. This study evaluated KAP toward COVID-19 among university students in Japan between May 22 and July 16, 2020, via an online questionnaire, and it further investigated the associated determining KAP factors. Among the eligible respondents (n = 362), 52.8% were female, 79.0% were undergraduate students, 32.9% were students whose major university subjects were biology-related, 35.4% were from the capital region, and 83.7% were Japanese. The overall KAP of university students in Japan was high. All respondents (100%) showed they possessed knowledge on avoiding enclosed spaces, crowded areas, and close situations. Most respondents showed a moderate or higher frequency of washing their hands or wearing masks (both at 96.4%). In addition, 68.5% of respondents showed a positive attitude toward early drug administration. In the logistic regressions, gender, major subjects, education level, nationality, residence, and psychological factors (private self-consciousness and extroversion) were associated with knowledge or attitudes toward COVD-19 (p < 0.05). In the logistic and multiple linear regressions, capital regions, high basic knowledge, high information acquisition, correct information explanations contributed positively to preventative action (p < 0.05). Non-capital regions, male gender, non-bio-backgrounds, high public self-consciousness, high advanced knowledge, incorrect information explanations, and high extroversion contributed negatively to self-restraint (p < 0.05). Moreover, self-restraint was decreasing over time. These findings clarify the Japanese university students’ KAP and the related factors in the early period of the COVID-19 pandemic, and they may help university managers, experts, and policymakers control the future spread of COVID-19 and other emerging infections.
The most burning topic of today, calls for a holistic solution that is reliable, secure, privacy preserved, cost effective Cloud storage that can tide over the turbulent conditions of the rapidly budding digital storage technologies. This send an outcry for a devoted solution, in the form of an individualized, patient-centric care-IoMT that augments precise disease identifications, decrease in errors, reduction in costs of care through the support of technology, allows patients to direct health information data to doctors ,manage drugs, keep Personal Health Records, caters to remote medical supports Care, provides proactive approach to preserving Good Health, improves and Accelerates Clinician Workflows, empowers extreme connectivity due to better automation and perceptions in the DNA of IoMT functions. But IoMT adoption is like a rose with thorns like constraints of increased administrative costs, deficiency of universal data access, present-day electronic medical records. The BCT is used in the framework to overcome the security issues of IoMT through the use of latest encryptions. Furthermore, this framework harnesses the benefits of Block Chain like reduced cost, speed, automation, immutability, near-impossible loss of data, permanence, removal of intermediaries, decentralization of consensus, legitimate access to health data, data safekeeping, accrual-based imbursement mechanisms, and medical supply chain efficacy. The outcomes in this paper are (i)A systematic investigation of the current IoMT, Block Chain and Cloud Storage in Health Care;(ii) Explore the challenges and necessities for the confluence of Block Chain (BC), Internet of Medical Things (IoMT), Cloud Computing (CC) ;(iii)Formulate the requirements necessary for the real-time remote Health Care of one-to-one care structure, which, supports the vital functions that are critical to the Patient Centric Health Care;(iv) Design and develop a novel BC IoMT U6 HCS (Block Chain based Internet of Medical Things for Uninterrupted, Ubiquitous, User-friendly, Unflappable, Unblemished, Unlimited Health Care Services) Layered Architecture, to support the vital functions critical for Patient Centric Health Care and (v) Implement and test with the previous established and proven techniques. The integrity of the Layered Architecture is validated with the already existing ones in terms of audit performances. The results from the Layered Architecture are validated and are proven to be competent in achieving safe auditing and surpass the former ones. The technology is in the sprouting phases, it is perilous that affiliates of the Health Care community realize the rudimentary ideas behind Block Chain, and detect its feasible impact on the future of patient centric medical care. Finally, and most importantly, this paper also gives a panoramic view on the current research status, and imminent directions of Secure Internet of Medical Things Using Block Chain.
Edge computing can provide many key functions without connecting to centralized servers, which enables remote areas to obtain real-time medical diagnoses. The combination of edge computing and Internet of things (IoT) devices can send remote patient data to the hospital, which will help to more effectively address long-term or chronic diseases. CT images are widely used in the diagnosis of clinical diseases, and their characteristics are an important basis for pathological diagnosis. In the CT imaging process, speckle noise is caused by the interference of ultrasound on human tissues, and its component information is complex. To solve these problems, we propose a 3D reconstruction method for noisy CT images in the IoT using edge computing. First, we propose a multi-stage feature extraction generative adversarial network (MF-GAN) denoising algorithm. The generator of MF-GAN adopts the multi-stage feature extraction, which can ensure the reconstruction of the image texture and edges. Second, we apply the denoised images generated from the MF-GAN method to perform the 3D reconstruction. A marching cube (MC) algorithm based on regional growth and trilinear interpolation (RGT-MC) is proposed. With the idea of regional growth, all voxels containing iso-surfaces are selected and calculated, which accelerates the reconstruction efficiency. The intersection point of the voxel and iso-surface is calculated by the trilinear interpolation algorithm, which effectively improves the reconstruction accuracy. The experimental results show that MF-GAN has a better denoising effect than other algorithms. Compared to other representative 3D algorithms, the RGT-MC algorithm greatly improves the efficiency and precision.INDEX TERMS Internet of Things, edge computing, generative adversarial network, 3D reconstruction.
The engineering construction-related data is essential for evaluating and tracing project quality in industry 4.0. Specifically, the preservation of the information is of great significance to the safety of intelligent water projects. This paper proposes a blockchain-based data management model for intelligent water projects to achieve standardization management and long-term preservation of archives. Based on studying the concrete production process in water conservancy project construction, we first build a behavioral model and the corresponding role assignment strategy to describe the standardized production process. Then, a distributed blockchain data structure for storing the production-related files is designed according to the model and strategy. In addition, to provide trust repository and transfer on the construction data, an intelligent keyless signature based on edge computing is employed to manage the data’s entry, modification, and approval. Finally, standardized and secure information is uploaded onto the blockchain to supervise intelligent water project construction quality and safety effectively. The experiments showed that the proposed model reduced the time and labor cost when generating the production data and ensured the security and traceability of the electronic archiving of the documents. Blockchain and intelligent keyless signatures jointly provide new data sharing and trading methods in intelligent water systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.