An oscillation model of a single free piston engine generator which is coupled with a linear generator is presented in this paper. Based on the dynamics and energy equilibrium, the oscillation model is described by the mass spring damping system. It demonstrates that the generator could be regarded as a single freedom self-exited vibration system. The excitation is the periodical combustion in the cylinder. And the system reaches a limit loop after several cycles. The frequency and amplitude characteristics with the effects of key variables are shown. It provides a power map as function of the stiffness and mass, which will be applied into the match design and optimization.
This paper describes a series of laboratory pullout tests that were performed to investigate the pullout behavior of high-density polyethylene (HDPE) uniaxial geogrid subjected to static and dynamic loading. Pullout tests were conducted on HDPE geogrid reinforced coarse sand under normal static loading (60–300 kPa), dynamic loading with different amplitudes (20, 40, and 60 kPa), and different frequencies (2, 4, and 6 Hz) by using the newly developed pullout apparatus. The results indicated that the pullout resistance of geogrid presented different growth patterns with the increase of normal loads under static loading. The amplitude and frequency both had significant effects on the interaction between reinforcement and soil, and the increment of the pullout resistance was 0.6 kN and 0.3 kN, respectively. The effect of dynamic loading on the soil-geogrid interface can be gradually equivalent to that of static loading corresponding to the balance position of dynamic loading with the increase of frequency compared with the static loading. The results of this study are helpful for the selection of the strength of the reinforcement in different locations and to simplify the study on the stress of reinforcement in reinforced soil structures under traffic loads.
The stresses around the fillet of fillet rolled crankshaft section in bending fatigue test are quite complicated, which include the residual stresses induced by fillet rolling process and bending stresses caused by bending fatigue test loads. In this paper, the corresponding three dimensional finite element models of roller- shaft are created and the residual stresses near the fillet of crankshaft section are obtained by flexible-flexible contact computation. Then the transient analysis of bending fatigue test based on modal superposition method is carried out and the bending stresses are got. The results of stress can be used to the bending fatigue design of crankshafts.
The controller that used to follow the change of load for the single free-piston engine generator is presented here. It aims to achieve the stable operation with the piston oscillation. Based the energy balance equation in consecutive cycles, the kinetic energy of the free piston was described by discrete state functions. According to its error varying with minimums, the following controller was established to set the fuel injection. It was applied into the performance simulation. The results indicate that the controller is available. Due to the discrete characteristic of the energy transfer, the restoration progress has to require two or three cycles at least. And the stroke is increased with the load stepped up. The top dead center position has smaller changes than the bottom dead center. The displacement versus velocity limit loop is bigger than before. It will be used in the prototype design in the experimental research.
Geocells are three-dimensional honeycomb-reinforced geotechnical materials composed of strips and junctions. Its junctions can support and transmit forces in several directions. The performance of geocells has a considerable impact on engineering applications. However, the testing program of geocell junctions still lacks standardization, and limited research has been undertaken regarding the failure mechanisms of junctions when subjected to various stress types. In this paper, four test procedures for HDPE welded geocell junctions were performed, including weld tensile, shear, peeling, and splitting strength tests. The influence of tests under different clamping distances (10.5 mm, 25 mm, 50 mm, and 100 mm) was analyzed, and the stress–strain behavior, peak elongation, and peak and residual strength of junctions under various force states were analyzed in detail. Finally, considering the strength and deformation, the slope laying method of geocells was proposed. The results show that the tensile strength and shear strength decrease with the clamping distance, whereas the peeling strength and splitting strength remain essentially unchanged. Under a 100 mm clamping distance, the tensile strength and shear strength are decreased by 4.51% and 14.08%. Geocells spreading vertically along the surface on a subgrade slope are thought to be more reliable, improving the geocell’s service life in slope protection. The test results can be used to improve a standardized geocell junction testing procedure as well as to guide, evaluate, and enhance the quality and application dependability of geocells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.