To develop novel insecticides with high efficiency, a new mode of action, and safety to nontarget organisms and the environment, a series of imidazopyridine mesoionic compounds containing an ester group have been designed and synthesized via a new synthetic method discovered by our group. The bioactivity results showed that most of the target compounds exhibited significant insecticidal activities against Aphis craccivora, and some of them showed moderate insecticidal activities against Sogatella furcifera. Among them, compounds C2, C4−C11, and D3 showed excellent insecticidal activities against A. craccivora (LC 50 values were lower than 4.5 μg/mL), which were superior to those of pymetrozine (LC 50 = 6.19 μg/mL) and triflumezopyrim (LC 50 = 4.68 μg/mL). Remarkably, the insecticidal activity of compound C9 was 5.9-fold greater than that of triflumezopyrim with an LC 50 value of 0.8 μg/mL. Proteomics and molecular docking results indicated that compound C9 may affect the nervous system of A. craccivora and act on nicotinic acetylcholine receptors like triflumezopyrim.
In this article, the Dirac electron scattering problem on circular barrier of radius [Formula: see text] is studied under the generalized uncertainty principle (GUP). The expressions of scattering coefficients, scattering cross-section and scattering efficiency of massless Dirac particle are obtained by solving the massless Dirac equation under GUP and discussed by numerical methods. It shows that the scattering coefficient, the scattering cross-section, and the scattering efficiency depend explicitly on the GUP parameter [Formula: see text]. For the scattering coefficient [Formula: see text], GUP may cause slight shift in the oscillation position of [Formula: see text] and make some peaks value of [Formula: see text] smaller. For scattering cross-section and scattering efficiency, GUP may also lead to slight shift in their oscillation position and increase of amplitude when the GUP parameter increases.
In this paper, the generalized Dirac oscillator with [Formula: see text]-Poincaré algebra is structured by replacing the momentum operator p with [Formula: see text] in [Formula: see text]-deformation Dirac equation. The deformed radial equation is derived for this model. Particularly, by solving the deformed radial equation, the wave functions and energy spectra which depend on deformation parameter [Formula: see text] have been obtained for these quantum systems with [Formula: see text] being a Yukawa-type potential, inverse-square-type singular potential and central fraction power singular potential in two-dimensional space, respectively. The results show that the deformation parameter [Formula: see text] can lead to decreasing of energy levels for the above quantum systems. At the same time, the degeneracy of energy spectra has been discussed and the corresponding conditions of degeneracy have been given for each case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.