In this paper, a class of diffusion zero-attracting stochastic gradient algorithms with exponentiated error cost functions is put forward due to its good performance for sparse system identification. Distributed estimation algorithms based on the popular mean-square error criterion have poor behavior for sparse system identification with color noise. To overcome this drawback, a class of stochastic gradient least exponentiated (LE) algorithms with exponentiated error cost functions were proposed, which achieved a low steady-state compared with the least mean square (LMS) algorithm. However, those LE algorithms may suffer from performance deterioration in the spare system. For sparse system identification in the adaptive network, a polynomial variable scaling factor improved diffusion least sum of exponentials (PZA-VSIDLSE) algorithm and an l p-norm constraint diffusion least exponentiated square (LP-DLE2) algorithm are proposed in this work. Instead of using the l 1-norm penalty, an l p-norm penalty and a polynomial zero-attractor are employed as a substitution in the cost functions of the LE algorithms. Then, we perform mean behavior model and mean square behavior modal of the LP-DLE2 algorithm with several common assumptions. Moreover, simulations in the context of distributed network sparse system identification show that the proposed algorithms have a low steady-state compared with the existing algorithms. INDEX TERMS Diffusion adaptive algorithms, exponentiated error, zero attracting, sparse system, variable scaling factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.