In its own right, vaccinology has been undergoing a revolution, and there are now a large number of innovative projects seeking to develop both prophylactic and therapeutic vaccines against diseases such as Hepatitis B, influenza, HIV, and cancers. [4-6] Generally speaking, the major advantages conferred by nanovaccines include improving stability by protecting antigens from premature degradation, providing good adjuvant properties, and assisting in the targeted delivery of an antigen to antigen-presenting cells (APCs). [7] A large variety of nanoscale materials have been deployed in nanovaccine designs. Seminal work with inorganic nanoparticles (NPs, e.g., gold, carbon, and silica) established the capacity of nanovaccine-bound antigens to elicit desired immune responses. Subsequent technologies have elaborated beyond inorganic NPs, for example, use of inorganic/ organic hybrid NPs (e.g., PEI adopted silica NPs and biomimetic magnetosomes) to enhance antigen immunogenicity. [8,9] Recently, new types of organic NPs (e.g., lipoprotein-mimicking nanodisks, pickering emulsions, and nanogels) have also received great attention for their applications in vaccines. [10-16] Recent years have seen enormous advances in nanovaccines for both prophylactic and therapeutic applications, but most of these technologies employ chemical or hybrid semi-biosynthetic production methods. Thus, production of nanovaccines has to date failed to exploit biology-only processes like complex sequential post-translational biochemical modifications and scalability, limiting the realization of the initial promise for offering major performance advantages and improved therapeutic outcomes over conventional vaccines. A Nano-B5 platform for in vivo production of fully protein-based, self-assembling, stable nanovaccines bearing diverse antigens including peptides and polysaccharides is presented here. Combined with the self-assembly capacities of pentamer domains from the bacterial AB 5 toxin and unnatural trimer peptides, diverse nanovaccine structures can be produced in common Escherichia coli strains and in attenuated pathogenic strains. Notably, the chassis of these nanovaccines functions as an immunostimulant. After showing excellent lymph node targeting and immunoresponse elicitation and safety performance in both mouse and monkey models, the strong prophylactic effects of these nanovaccines against infection, as well as their efficient therapeutic effects against tumors are further demonstrated. Thus, the Nano-B5 platform can efficiently combine diverse modular components and antigen cargos to efficiently generate a potentially very large diversity of nanovaccine structures using many bacterial species.
In this paper, we give a review of our theoretical and experimental progress in octahedral spherical hohlraum study. From our theoretical study, the octahedral spherical hohlraums with 6 Laser Entrance Holes (LEHs) of octahedral symmetry have robust high symmetry during the capsule implosion at hohlraum-to-capsule radius ratio larger than 3.7. In addition, the octahedral spherical hohlraums also have potential superiority on low backscattering without supplementary technology. We studied the laser arrangement and constraints of the octahedral spherical hohlraums, and gave a design on the laser arrangement for ignition octahedral hohlraums. As a result, the injection angle of laser beams of 50°–60° was proposed as the optimum candidate range for the octahedral spherical hohlraums. We proposed a novel octahedral spherical hohlraum with cylindrical LEHs and LEH shields, in order to increase the laser coupling efficiency and improve the capsule symmetry and to mitigate the influence of the wall blowoff on laser transport. We studied on the sensitivity of the octahedral spherical hohlraums to random errors and compared the sensitivity among the octahedral spherical hohlraums, the rugby hohlraums and the cylindrical hohlraums, and the results show that the octahedral spherical hohlraums are robust to these random errors while the cylindrical hohlraums are the most sensitive. Up till to now, we have carried out three experiments on the spherical hohlraum with 2 LEHs on Shenguang(SG) laser facilities, including demonstration of improving laser transport by using the cylindrical LEHs in the spherical hohlraums, spherical hohlraum energetics on the SGIII prototype laser facility, and comparisons of laser plasma instabilities between the spherical hohlraums and the cylindrical hohlraums on the SGIII laser facility.
The domestic and foreign scholars have studied naked mole rats more focused on the respect such as its long life, resistant to low oxygen, little spontaneous tumor, but the study of the immune system is little. In this study, we compared the anatomy and tissue morphology of NMR and ICR mouse spleens and found that the gross appearance of the NNMR spleen differed from ICR. There were more macrophages in NNMR spleens than in ICR spleens. Furthermore, we focused on the differences of macrophages. We compared their phagocytic capabilities and the data showed that NNMR macrophages are more phagocytic than ICR mouse macrophages. We also used polyI:C and LPS to stimulate the NMR and ICR macrophages and then measured the immune response as expression of certain TLR signaling molecules. After stimulation, there was a lower increase in apoptosis of NMR macrophages than ICR macrophages and a non-significant increased expression of TLRs in NMR macrophages than in ICR macrophages. In contrast, NF-κB proteins increased more significantly in NMR’s than in ICR’s and the expression of downstream cytokines in NMR macrophages also increased more than in ICR macrophages. Based on these results, we hypothesize that in addition to being able to eat foreign matter, NMR macrophages can activate the TLRs, start the NF-κB and produce a large number of cytokines to enhance immune response, so as to protect the body from outside interference when the virus or bacteria invading.
Gastrointestinal stromal tumors (GISTs) can present with different clinical and immunohistochemical characteristics according to different anatomic sites. The aim of this study was to compare clinicopathologic and computed tomography (CT) features of small bowel stromal tumors located in the duodenum, jejunum, and ileum. In total, 197 patients (109 male, 88 female) with small bowel GISTs were retrospectively reviewed. All tumors had definite anatomic sites in the small bowel tract with surgical confirmation. The clinicopathologic variables included age, sex, onset of symptoms, and tumor risk category. CT variables included tumor size, degree enhancement, enhancement pattern (region of necrosis), adjacent tissue involvement, lymphadenopathy, and distant metastasis. We assessed any possible differences according to different GIST site of origin. Based on tumor size and mitotic count, the risk categories in different anatomic sites did not differ significantly between duodenal and jejunal GISTs. However, high risk ileum GISTs accounted for 66.0% of ileal cases, which was higher than duodenum cases (36.8%, P = 0.002) and jejunum cases (43.9%, P = 0.004). The mean size of GISTs in the ileum was 9.77 cm, which was significantly larger than in the duodenum (7.41 cm, P = 0.043), and in the jejunum (8.14 cm, P = 0.027). On CT images, enhancement degree appeared to gradually increase from the duodenum to the ileum in the portal phase, and the enhancement pattern presented a tendency for heterogeneity. In Conclusions, the clinicopathologic and CT features of small bowel GISTs can differ according to different primary anatomic sites.
We investigate a new laser-driven spherically convergent plasma fusion scheme (SCPF) that can produce thermonuclear neutrons stably and efficiently. In the SCPF scheme, laser beams of nanosecond pulse duration and 10^{14}-10^{15} W/cm^{2} intensity uniformly irradiate the fuel layer lined inside a spherical hohlraum. The fuel layer is ablated and heated to expand inwards. Eventually, the hot fuel plasmas converge, collide, merge, and stagnate at the central region, converting most of their kinetic energy to internal energy, forming a thermonuclear fusion fireball. With the assumptions of steady ablation and adiabatic expansion, we theoretically predict the neutron yield Y_{n} to be related to the laser energy E_{L}, the hohlraum radius R_{h}, and the pulse duration τ through a scaling law of Y_{n}∝(E_{L}/R_{h}^{1.2}τ^{0.2})^{2.5}. We have done experiments at the ShengGuangIII-prototype facility to demonstrate the principle of the SCPF scheme. Some important implications are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.