The accurate mapping of reads that span splice junctions is a critical component of all analytic techniques that work with RNA-seq data. We introduce a second generation splice detection algorithm, MapSplice, whose focus is high sensitivity and specificity in the detection of splices as well as CPU and memory efficiency. MapSplice can be applied to both short (<75 bp) and long reads (≥75 bp). MapSplice is not dependent on splice site features or intron length, consequently it can detect novel canonical as well as non-canonical splices. MapSplice leverages the quality and diversity of read alignments of a given splice to increase accuracy. We demonstrate that MapSplice achieves higher sensitivity and specificity than TopHat and SpliceMap on a set of simulated RNA-seq data. Experimental studies also support the accuracy of the algorithm. Splice junctions derived from eight breast cancer RNA-seq datasets recapitulated the extensiveness of alternative splicing on a global level as well as the differences between molecular subtypes of breast cancer. These combined results indicate that MapSplice is a highly accurate algorithm for the alignment of RNA-seq reads to splice junctions. Software download URL: http://www.netlab.uky.edu/p/bioinfo/MapSplice.
The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some—including the infamous ergot alkaloids—have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses.
Garlic, an economically important vegetable, spice, and medicinal crop, produces highly enlarged bulbs and unique organosulfur compounds. Here, we report a chromosome-level genome assembly for garlic, with a total size of approximately 16.24 Gb, as well as the annotation of 57 561 predicted protein-coding genes, making garlic the first Allium species with a sequenced genome. Analysis of this garlic genome assembly reveals a recent burst of transposable elements, explaining the substantial expansion of the garlic genome. We examined the evolution of certain genes associated with the biosynthesis of allicin and inulin neoseries-type fructans, and provided new insights into the biosynthesis of these two compounds. Furthermore, a large-scale transcriptome was produced to characterize the expression patterns of garlic genes in different tissues and at various growth stages of enlarged bulbs. The reference genome and large-scale transcriptome data generated in this study provide valuable new resources for research on garlic biology and breeding.
BACKGROUND & AIMS Hyperactivation of the RAS-RAF signaling pathway in colorectal tumors is associated with metastasis and poor outcomes of patients. Little is known about how RAS–RAF signaling is turned off once activated. We investigated how the pH domain and leucine-rich repeat protein phosphatases (PHLPPs) control RAS–RAF signaling and colorectal cancer (CRC) development. METHODS We used co-immunoprecipitation assays to identify substrates of PHLPP1 and PHLPP2.We studied phosphorylation of RAF1 in CRC cells that express transgenic PHLPP1 or PHLPP2, or lentiviral-based small hairpin (sh)RNAs against their transcripts; we measured effects on cell motility, migration, and invasion in vitro. Tumor progression and survival were analyzed in Phlpp1−/− mice, ApcMin mice, and ApcMin/Phlpp1−/− mice. Microarray data sets of colorectal tumor and non-tumor tissues were analyzed for PHLPP gene expression. RESULTS PHLPP1 and 2 were found to dephosphorylate RAF1 at S338, inhibiting its kinase activity in vitro and in CRC cells. In cells, shRNA knockdown of PHLPP1 or PHLPP2 increased the amplitude and duration of RAF-MEK-ERK signaling downstream of EGFR and KRAS, whereas overexpression had the opposite effect. Knockdown of PHLPP1 or PHLPP2 caused CRC cells to express markers of the epithelial-mesenchymal transition (EMT), and increased migration and invasion in vitro. ApcMin/Phlpp1−/− mice had decreased survival and developed larger intestinal and colon tumors than ApcMin mice, which developed mostly low-grade adenomas; in contrast, 20% of the tumors that developed in ApcMin/Phlpp1−/− mice were invasive adenocarcinomas. Normal villi and adenomas of ApcMin/Phlpp1−/− mice had significantly fewer apoptotic cells than ApcMin mice. Human CRC patient microarray data revealed that the expression of PHLPP1 or PHLPP2 is positively correlated with CDH1. CONCLUSIONS PHLPP1 and 2 dephosphorylate RAF1 to reduce its signaling, increase the invasive and migratory activities of CRC cells, and activate the EMT. In ApcMin mice, loss of PHLPP1 promotes tumor progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.