As an initial step to increase the use of renewable biomass resources, this study was aimed at investigating the effects of ultrasound pretreatment on structural changes of wood. Samples were pretreated by ultrasound with the power of 300W and frequency of 28kHz in aqueous soda solution, aqueous acetic acid, or distilled water, then pretreated and control samples were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The results shown that ultrasound pretreatment is indeed effective in modifying the physiochemical structure of eucalyptus wood; the pretreatment decreased the quantity of alkali metals (e.g., potassium, calcium and magnesium) in the resulting material. Compared to the control group, the residual char content of samples pretreated in aqueous soda solution increased by 10.08%-20.12% and the reaction temperature decreased from 361°C to 341°C, however, in samples pretreated by ultrasound in acetic solution or distilled water, the residual char content decreased by 12.40%-21.45% and there were no significant differences in reactivity apart from a slightly higher maximum reaction rate. Ultrasound pretreatment increased the samples' crystallinity up to 35.5% and successfully removed cellulose, hemicellulose, and lignin from the samples; the pretreatment also increased the exposure of the sample to the treatment solutions, broke down sample pits, and generated collapses and microchannels on sample pits, and removed attachments in the samples.
Ultrasonic energy was applied to assist the wood vacuum drying process. At a drying temperature of 60°C, the absolute pressure was either 0.05 MPa or 0.08 MPa; the ultrasonic power and frequency were 100 W and 28 kHz, respectively. The results showed that the effective water diffusivity of the specimens dried by the ultrasonic assisted vacuum drying at 0.05 MPa or 0.08 MPa were higher than that of the samples dried without ultrasound. The ultrasound-vacuum drying rate was much faster than that of drying without ultrasound, especially for wood with a moisture content above the fiber saturation point. Drying at the absolute pressure of 0.05 MPa was faster than that of 0.08 MPa. Ultrasound-assisted drying was especially more beneficial when removing free water. The ultrasound-vacuum drying method could be applied in the wood drying industry as a means of saving energy and minimizing product quality damage.
This work investigated the physicochemical properties of Chinese fir after ultrasound-assisted pretreatments with borax and sodium hydroxide additives in an aqueous solution. TGA, FTIR, and XRD were used to analyze the thermal degradation processes, changes in chemical structures, and crystallinity of the treated samples, respectively. Additionally, the release of volatiles from wood pyrolysis was measured on-line by the TG-FTIR apparatus. In thermal analysis, all samples showed main degradation stages at 220-500 °C, and alkaline compounds could efficiently shift the process to lower temperatures with lower maximum weight loss rate (MWLR) and more residues. From TG-FTIR, it was observed that CO was the primary gas product from pyrolysis in the alkaline-treated samples, while there were more carbonyl compounds released in the control and deionized water groups. Due to the destruction and removal of hemicellulose and lignin after alkaline treatments, the related peaks changed greatly. Changes in the ester groups caused by saponification also accounted for one of the most significant differences between samples. Moreover, except for the deionized water group without sonication, the crystallinity of the samples increased from 6.34% to 11.29%. Overall, comparing the samples treated with or without ultrasound, the results showed that the ultrasound treatment did influence the samples' physicochemical properties, and its' effects varied by the basicity of the solution. This in-depth investigation offers a better understanding of ultrasound-assisted and alkaline pretreatments of wood materials.
In this study, the influence of ultrasound-assisted extraction on eucalyptus samples with special focus on pyrolysis characteristics and kinetic parameters was explored. Ultrasound and Soxhlet extraction were used to pretreat samples respectively, then samples were assayed by component analysis, TG-FTIR, and kinetic analysis. Ultrasound-assisted extraction did change the physiochemical characteristics of eucalyptus samples, particularly in regards to the quantity of extractives obtained. In TG and DTG curves, ultrasound-extracted samples reflected lower residual weight ratio (17.77%) and higher maximum weight loss rate (-22.92%/min), and were accompanied by a slight shift in the weight loss rate peak to lower temperature (366°C). The volatiles produced during pyrolysis and the discrepancies of product distribution between experimental and controlled groups were explored based on TG-FTIR spectra. According to kinetic analysis results, ultrasound-treated samples showed higher activation energy at the primary portion of thermal degradation with an average of 206.09kJ/mol.
Highlights Ultrasound treatment reduces the lignin intensity in cell wall. Ultrasound treatment reduced the relative hemicellulose content. Ultrasound treatment increased the crystallinity. Ultrasound-alkali treatment had more pronounced effects on cell wall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.