The interplay between different ordered phases, such as superconducting, charge or spin ordered phases, is of central interest in condensed-matter physics. The very recent discovery of superconductivity with a remarkable Tc = 26 K in Fe-based oxypnictide La(O1−xFx)FeAs (see Kamihara Y. et al., J. Am. Chem. Soc., 130 (2008) 3296) is a surprise to the scientific community and has generated tremendous interest. The pure LaOFeAs itself is not superconducting but shows an anomaly near 150 K in both resistivity and dc magnetic susceptibility. Here we provide combined experimental and theoretical evidences showing that a spin-density-wave (SDW) state develops at low temperature, in association with electron Nematic order. The electron-doping by F suppresses the SDW instability and induces the superconductivity. Therefore, the La(O1−xFx)FeAs offers an exciting new system showing competing orders in layered compounds.
Abstract:Here we report a new quaternary iron-arsenide superconductor Nd[O 1-x F x ]FeAs, with the onset resistivity transition at 51.9 K and Meissner transition at 51 K. This compound has the same crystal structure as LaOFeAs, and becomes the second superconductor after Pr[O 1-x F x ]FeAs that superconducts above 50 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.