An electrolyte based on fluorinated carbonate solvents was evaluated with high voltage cathode materials at elevated temperature. The theoretically high anodic stability of these new electrolytes was supported by electrochemical evaluation results using LiNi 0.
Redox-active organic materials (ROMs) have shown great promise for redox flow battery applications but generally encounter limited cycling efficiency and stability at relevant redox material concentrations in nonaqueous systems. Here we report a new heterocyclic organic anolyte molecule, 2,1,3-benzothiadiazole, that has high solubility, a low redox potential, and fast electrochemical kinetics. Coupling it with a benchmark catholyte ROM, the nonaqueous organic flow battery demonstrated significant improvement in cyclable redox material concentrations and cell efficiencies compared to the state-of-the-art nonaqueous systems. Especially, this system produced exceeding cyclability with relatively stable efficiencies and capacities at high ROM concentrations (>0.5 M), which is ascribed to the highly delocalized charge densities in the radical anions of 2,1,3-benzothiadiazole, leading to good chemical stability. This material development represents significant progress toward promising next-generation energy storage.
This paper presents the computational assessment of the electrochemical stability of a series of alkyl methylimidazolium-based ionic liquids for their use as lithium battery electrolytes. The oxidation and reduction potentials of the constituent cation and anion of each ionic liquid with respect to a Li(+)/Li reference electrode were calculated using density functional theory following the method of thermodynamic cycles, and the electrochemical stability windows (ESW)s of these ionic liquids were obtained. The effect of varying the length of alkyl side chains of the methylimidazolium-based cations on the redox potentials and ESWs was investigated. The results show that the limits of the ESWs of these methylimidazolium-based ionic liquids are defined by the oxidation potential of the anions and the reduction potential of alkyl-methylimidazolium cations. Moreover, ionic liquids with [PF6](-) anion have a wider ESW. In addition to characterizing structure-function relationships, the accuracy of the computational approach was assessed through comparisons of the data against experimental measurements of ESWs. The potentials calculated by the thermodynamic cycle method are in good agreement with the experimental data while the HOMO/LUMO method overestimates the redox potentials. This work demonstrates that these approaches can provide guidance in selecting ionic liquid electrolytes when designing high-voltage rechargeable batteries.
The successful development of Li-air batteries would significantly increase the possibility of extending the range of electric vehicles. There is much evidence that typical organic carbonate based electrolytes used in lithium ion batteries form lithium carbonates from reaction with oxygen reduction products during discharge in lithium-air cells so more stable electrolytes need to be found. This combined experimental and computational study of an electrolyte based on a tri(ethylene glycol)-substituted trimethylsilane () provides evidence that the ethers are more stable toward oxygen reduction discharge species. X-ray photoelectron spectroscopy (XPS) and FTIR experiments show that only lithium oxides and no carbonates are formed when electrolyte is used. In contrast XPS shows that propylene carbonate (PC) in the same cell configuration decomposes to form lithium carbonates during discharge. Density functional calculations of probable decomposition reaction pathways involving solvated oxygen reduction species confirm that oligoether substituted silanes, as well as other ethers, are more stable to the oxygen reduction products than propylene carbonate. These results indicate that the choice of electrolyte plays a key role in the performance of Li-air batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.