Overexpressed in colon carcinoma-1 (OCC-1) is one of the earliest annotated long noncoding RNAs (lncRNAs) in colorectal cancer (CRC); however, its function remains largely unknown. Here, we revealed that OCC-1 plays a tumor suppressive role in CRC. OCC-1 knockdown by RNA interference promotes cell growth both in vitro and in vivo, which is largely due to its ability to inhibit G0 to G1 and G1 to S phase cell cycle transitions. In addition, overexpression of OCC-1 can suppress cell growth in OCC-1 knockdown cells. OCC-1 exerts its function by binding to and destabilizing HuR (ELAVL1), a cancer-associated RNA binding protein (RBP) which can bind to and stabilize thousands of mRNAs. OCC-1 enhances the binding of ubiquitin E3 ligase β-TrCP1 to HuR and renders HuR susceptible to ubiquitination and degradation, thereby reducing the levels of HuR and its target mRNAs, including the mRNAs directly associated with cancer cell growth. These findings reveal that lncRNA OCC-1 can regulate the levels of a large number of mRNAs at post-transcriptional level through modulating RBP HuR stability.
The Fez family zinc finger protein 1 (FEZF1), a critical transcription factor in nervous system development, has been implicated in cancer progression recently. However, its clinical significance remains unknown. By analyzing gene expression data of eight most common cancer types from The Cancer Genome Atlas (TCGA), we found that FEZF1 prominently associated with the recurrence-free survival of cervical cancer patients (P<0.001) and was an independent diagnostic factor for cervical cancer recurrence (P=0.002). Moreover, FEZF1 expression was significantly higher in the tumor samples from cervical cancer patients with relapse in TCGA(P=0.015). By RNA interference, we knocked down FEZF1 and found that cell proliferation, growth and migration were significantly decreased in C33A and SiHa cells. Meanwhile, FEZF1 knockdown also attenuated the growth of C33A cells in nude mice. In contrast, expression of FEZF1 promoted cell proliferation, growth and migration in HeLa cells. Using chromatin immunoprecipitation (ChIP) assay, we revealed that FEZF1 could bind to multiple key genes in the Wnt signaling pathway in HeLa cells. Furthermore, analysis of the levels of β-catenin protein, the core component of the Wnt pathway, and downstream effector genes of the pathway showed that FEZF1 could activate the Wnt pathway. Together, these results suggest that FEZF1 promotes cell proliferation and migration possibly by acting as a transcriptional activator of the Wnt signaling pathway in cervical cancer, and also provide a valuable molecular predictive marker for cervical cancer recurrence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.