Abstract. Holding a climatically and geologically key position both regionally and globally, the northeastern Tibetan Plateau provides a natural laboratory for illustrating the interactions between tectonic activity and the evolution of the Asian interior aridification. Determining when and how the late Miocene climate evolved on the northeastern Tibetan Plateau may help us better understand the relationships among tectonic uplift, global cooling and ecosystem evolution. Previous paleoenvironmental research has focused on the western Longzhong Basin. Late Miocene aridification data derived from pollen now require corroborative evidence from the eastern Longzhong Basin. Here, we present a late Miocene pollen record from the Tianshui Basin in the eastern Longzhong Basin. Our results show that a general trend toward dry climate was superimposed by stepwise aridification: a temperate forest with a rather humid climate existed in the basin between 11.4 and 10.1 Ma, followed by a temperate open forest environment with a less humid climate between 10.1 and 7.4 Ma, then giving way to an open temperate forest–steppe environment with a relatively arid climate between 7.4 and 6.4 Ma. The vegetation succession demonstrates that the aridification of the Asian interior occurred after ∼ 7–8 Ma, which is confirmed by other evidence from Asia. Furthermore, the aridification trend on the northeastern Tibetan Plateau parallels the global cooling of the late Miocene; the stepwise vegetation succession is consistent with the major uplift of the northeastern Tibetan Plateau during this time. These integrated environmental proxies indicate that the long-term global cooling and the Tibetan Plateau uplift caused the late Miocene aridification of the Asian interior.
The deformation of the Tibetan Plateau is central to unraveling the process and mechanism of continental tectonics. Although most agree that crust shortening and plateau growth were protracted throughout the Cenozoic Indo‐Asian collision, particular deformation histories relating to tectonic kinematics and dynamics are still incomplete due to sparseness of diagnostic geological information from plateau margin. Here we present combined investigation of stratigraphy, magnetostratigraphy, and provenance for the eastern margin of Longzhong Basin to show two reorganizations of basin formation and tectonic regime during the late Tertiary. First, the depocenter migrated from the dispersed Paleogene sequences to the Wushan‐Tianshui foreland sequence during the earliest Miocene (circa 22 Ma), accompanied by shift of sedimentary provenance from double sources including the eastern Qilian block and eastern West Qinling terrain to single source within the West Qinling. It suggests reorganization of deformation from NW‐SE extension to NE‐SW contraction and initial uplift of the eastern West Qinling. Second, massive coarse‐grained fluvial beds were revived in the Wushan Basin during the late Miocene (circa 10 Ma), associated by eastward depositional expansion and another shift of sedimentary provenance toward northeast. It reflects thrusting up of the northern edge of the West Qinling and Liupan Shan Mountains linked with relocation of crust shortening from NE‐SW direction to ENE‐WSW direction and accelerated deformation of northeastern Tibet. These transitions of deformation regimes imply variation of geodynamic mechanisms during the process of plateau growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.