Previous studies have attempted to find autonomic differences of the cardiac system between the congestive heart failure (CHF) disease and healthy groups using a variety of algorithms of pattern recognition. By comparing previous literature, we have found that there are two shortcomings: 1) Previous studies have focused on improving the accuracy of models, but the number of features used has mostly exceeded 10, leading to poor generalization performance; 2) Previous works rarely distinguish the severity levels of CHF disease. In order to make up for these two shortcomings, we proposed two models: model A was used for distinguishing CHF patients from the normal people; model B was used for diagnosing the four severity levels of CHF disease. Based on long-term heart rate variability (HRV) (40000 intervals–8h) signals, we extracted linear and non-linear features from the inter-beat-interval (IBI) series. After that, the sequence forward selection algorithm (SFS) reduced the feature dimension. Finally, models with the best performance were selected through the leave-one-subject-out validation. For a total of 113 samples of the dataset, we applied the support vector machine classifier and five HRV features for CHF discrimination and obtained an accuracy of 97.35%. For a total of 41 samples of the dataset, we applied k-nearest-neighbor (K = 1) classifier and four HRV features for diagnosing four severity levels of CHF disease and got an accuracy of 87.80%. The contribution in this work was to use the fewer features to optimize our models by the leave-one-subject-out validation. The relatively good generalization performance of our models indicated their value in clinical application.
No abstract
Physiological studies have found that the autonomic nervous system plays an important role in controlling blood pressure values. This paper, based on machine learning approaches, analysed short-term heart rate variability to determine differences in autonomic nervous function between hypertensive patients and normal population. The electrocardiogram (ECG) of hypertensive patients are 137 ECG recordings provided by Smart Health for Assessing the Risk of Events via ECG (SHAREE database). The RR intervals of healthy subjects include the data of 18 subjects from the MIT-BIH Normal Sinus Rhythm Database (nsrdb) and 54 subjects from the Normal Sinus Rhythm RR Interval Database (nsr2db). In this paper, each RR segment includes continuous 500 beats. Seventeen features were extracted to distinguish the hypertensive heart beat rhythms from the normal ones, and Kolmogorov-Smirnov test and sequential backward selection (SBS) were applied to get the best feature combinations. In addition, support vector machine (SVM), k-nearest neighbor (KNN) and random forest (RF) were applied as classifiers in the study. The performance of each classifier was evaluated independently using the leave-one-subject-out validation method. The best predictive model was based on RF and enabled to identify hypertensive patients by five features with an accuracy of 86.44%. The best five HRV features are sample entropy (SampEn), very low frequency spectral powers (VLF), root mean square of successful differences (RMSSD), ratio of low frequency spectral powers and high frequency spectral powers (LF/HF) and vector angle index (VAI). The results of the study show sympathetic overactivity and decreased parasympathetic tone in hypertensive patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.