ObjectiveTo investigate the effects of microRNA-7 (miR-7) on the proliferation, migration and invasion of non-small cell lung cancer NSCLC) cells by targeting FAK through ERK/MAPK signaling pathway.MethodsNSCLC tissues and adjacent normal tissues were obtained from 160 NSCLC patients after operation. NSCLC cell lines (A549, H1299 and H1355) and a normal human fetal lung fibroblast cell line (MRC-5) were obtained. NSCLC cells were assigned into miR-7 inhibitors, miR-7 mimics, blank, miR-7 mimics control, miR-7 inhibitors control, FAK siRNA and miR-7 inhibitors + FAK siRNA groups. The expressions of miR-7 and FAK mRNA in tissues and cell lines were detected by qRT-PCR and Western-Blotting. Cell proliferation, migration and invasion were detected by MTT assay, wound scratch assay and Transwell assay.ResultsCompared with adjacent normal tissues, miR-7 expression was down-regulated, but the mRNA and protein expressions of FAK, ERK and MAPK were up-regulated. Compared with the blank and mimics control groups, miR-7 significantly increased but FAK, ERK and MAPK expressions decreased in miR-7 mimics and FAK siRNA groups. Cell proliferation, migration and invasion were inhibited in the miR-7 mimics and FAK siRNA groups, while opposite regarding miR-7 inhibitors group.ConclusionThe miR-7 can inhibit the activation of ERK/MAPK signaling pathway by down-regulating FAK expression, thereby suppressing the proliferation, migration and invasion of NSCLC cells. The miR-7 and its target gene FAK may be novel targets for the diagnosis and treatment of NSCLC.
Background/Aims: Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide. This study aimed to identify overlapping or diverging dysregulated genes, lncRNAs, miRNAs and signaling pathways in smoking and non-smoking chronic obstructive pulmonary disease (COPD). Methods: Compared to normal controls, we identified the shared and divergent differentially expressed mRNAs (DEmRNAs), miRNAs (DEmiRNAs) and lncRNAs (DElncRNAs) in smoking and non-smoking COPD by RNA-sequencing and bioinformatics analysis. Functional annotation of DEmRNAs were performed. Both cis and trans-target DEmRNAs of DElncRNAs were identified. The target DEmRNAs of DEmiRNAs were identified as well. The DEmiRNA-DEmRNA-DElncRNA interaction network was constructed. QRT-PCR was performed to validat the selected DEmiRNAs, DEmRNA and DElncRNAs in COPD. Results: Compared to normal control, 1234 DEmRNAs, 96 DElncRNAs and 151 DEmiRNAs were identified in non-smoking patients with COPD; 670 DEmRNAs, 44 DElncRNAs and 63 DEmiRNAs were identified in smoking patients with COPD. Leukocyte transendothelial migration and pathways in cancer were significantly enriched pathways in non-smoking and smoking COPD, respectively. MiR-122-5p-A2M-LINC00987/A2M-AS1/ linc0061 interactions might play key roles in COPD irrespective with the smoking status. Let-7-ADRB1-HLA-DQB1-AS1 might play a key role in the pathogenesis of smoking COPD while miR-218-5p/miR15a-RORA-LOC101928100/LINC00861 and miR-218-5p/miR15a-TGFβ3-RORA-AS1 interactions might involve with non-smoking COPD. Conclusion: We identified the shared and diverging genes, lncRNAs, miRNAs and their interactions and pathways in smoking and non-smoking COPD which provided clues for understanding the mechanism and developing novel diagnostic and therapeutic strategies for COPD.
Aim: This study aimed to explore the molecular mechanism of severe asthma. Materials & methods: The shared and divergent differentially expressed mRNAs (DEmRNAs), miRNAs (DEmiRNAs) and lncRNAs (DElncRNAs) in asthma and severe asthma were identified by RNA-sequencing. Severe asthma-specific and shared DEmiRNA–DEmRNA–DElncRNA interaction networks were performed. Results: Compared with normal control, 1328 DEmRNAs, 608 DElncRNAs and 63 DEmiRNAs were identified in severe asthma. Compared with asthma, 95 DEmRNAs, 143 DElncRNAs and 96 DEmiRNAs were identified in severe asthma. MiR-133a-3p-EFHD2/CNN2-AC144831.1 interactions and miR-3613-3p-CD44/BCL11B-LINC00158/CTA-217C2.1/AC010976.2/RP11-641A6.2 interactions were speculated to involve with the development of severe asthma. The results of GSE69683 validation were generally consistent with our RNA-sequencing results. Conclusion: This study provides clues for understanding the mechanism of severe asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.