Reducing lattice thermal conductivity is one of the most effective routes for improving the performance of thermoelectric materials. Herein, a novel alloy design concept, i.e., the high-entropy alloy concept, is introduced as a new strategy to reduce lattice thermal conductivity and the BiSbTe 1.5 Se 1.5 high-entropy alloy was chosen as a paradigm to demonstrate the applicability of this new approach. It was found that the lattice thermal conductivity of this high-entropy alloy is quite low, i.e., $0.47 W m À1 K À1 at 400 K, which results from its severe lattice-distortion. In addition, the minor addition of Ag could improve the absolute value of its Seebeck coefficient and further reduce its lattice thermal conductivity.Consequently, a peak ZT value of 0.63 was observed at 450 K for this alloy with the addition of 0.9 at% Ag. Our current results suggest that the revolutionary alloy design concept is a promising strategy for developing novel thermoelectric materials with desirable properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.