Flexoelectricity refers to the mechanical-electro coupling between strain gradient and electric polarization, and conversely, the electro-mechanical coupling between electric field gradient and mechanical stress. This unique effect shows a promising size effect which is usually large as the material dimension is shrunk down. Moreover, it could break the limitation of centrosymmetry, and has been found in numerous kinds of materials which cover insulators, liquid crystals, biological materials, and semiconductors. In this review, we will give a brief report about the recent discoveries in flexoelectricity, focusing on the flexoelectric materials and their applications. The theoretical developments in this field are also addressed. In the end, the perspective of flexoelectricity and some open questions which still remain unsolved are commented upon.
Flexoelectricity couples strain gradient to polarization and usually exhibits a large coefficient in the paraelectric phase of the ferroelectric perovskites. In this study, we employed the relaxor 0.3Pb(In1/2Nb1/2)O3-0.35Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (PIN-PMN-PT) single crystals to study the relationship between flexoelectric coefficients and the crystal structure. The flexoelectric coefficients in PIN-PMN-PT single crystal are found to vary from 57 μC/m at orthorhombic/monoclinic phase to 135 μC/m at tetragonal phase, and decreases to less than 27 μC/m in the temperature above Tm. This result discloses that ferroelectricity can significantly enhance the flexoelectricity in this kind of perovskite.
Heterogeneous ice nucleation on atmospheric
aerosols strongly affects
the earth’s climate, and at the microscopic level, surface-irregularity-induced
ice crystallization behaviors are common but crucial. Because of the
lack of visual evidence and effective experimental methods, the mechanism
of atomic-structure-dependent ice formation on aerosol surfaces is
poorly understood. Here we chose highly oriented pyrolytic graphite
(HOPG) to represent soot (a primary aerosol), and environmental scanning
electron microscopy (ESEM) was performed for in situ observations
of ice formation. We found that hexagonal ice crystals show an aligned
growth pattern via a two-stage pathway with one a axis coinciding with the direction of atomic step edges on the HOPG
surface. Additionally, the ice crystals grow at a noticeably higher
speed along this direction. This study reveals the role of atomic
surface defects in heterogeneous ice nucleation and may pave the way
to control icing-related processes in practical applications.
AB2O4-type spinels with low relative permittivity (εr) and high quality factor (Q × f) are crucial to high-speed signal propagation systems. In this work, Zn2+/Ge4+ co-doping to substitute Ga3+ in ZnGa2O4 was designed to lower the sintering temperature and adjust the thermal stability of resonance frequency simultaneously. Zn1+xGa2−2xGexO4 (0.1 ⩽ x ⩽ 0.5) ceramics were synthesised by the conventional solid-state method. Zn2+/Ge4+ co-substitution induced minimal variation in the macroscopical spinel structure, which effectively lowered the sintering temperature from 1385 to 1250 °C. All compositions crystallized in a normal spinel structure and exhibited dense microstructures and excellent microwave dielectric properties. The compositional dependent quality factor was related to the microstructural variation, being confirmed by Raman features. A composition with x = 0.3 shows the best dielectric properties with εr ≈ 10.09, Q × f ≈ 112,700 THz, and τf ≈ −75.6 ppm/°C. The negative τf value was further adjusted to be near-zero through the formation of composite ceramics with TiO2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.