The soybean aphid Aphis glycines Matsumura (Hemiptera: Aphididae) is a primary pest of soybeans and poses a serious threat to soybean production. Our studies were conducted to understand the effects of different concentrations of insecticides (imidacloprid and thiamethoxam) on A. glycines and provided critical information for its effective management. Here, we found that the mean generation time and adult and total pre-nymphiposition periods of the LC50 imidacloprid- and thiamethoxam-treatment groups were significantly longer than those of the control group, although the adult pre-nymphiposition period in LC30 imidacloprid and thiamethoxam treatment groups was significantly shorter than that of the control group. Additionally, the mean fecundity per female adult, net reproductive rate, intrinsic rate of increase, and finite rate of increase of the LC30 imidacloprid-treatment group were significantly lower than those of the control group and higher than those of the LC50 imidacloprid-treatment group (P < 0.05). Moreover, both insecticides exerted stress effects on A. glycines, and specimens treated with the two insecticides at the LC50 showed a significant decrease in their growth rates relative to those treated with the insecticides at LC30. These results provide a reference for exploring the effects of imidacloprid and thiamethoxam on A. glycines population dynamics in the field and offer insight to agricultural producers on the potential of low-lethal concentrations of insecticides to stimulate insect reproduction during insecticide application.
The aim of this study was to determine the effect of rotenone stress on Aphis glycines Matsumura (Hemiptera: Aphididae) populations in different habitats of Northeast China. The changes in kinase expression activity of endogenous substances (proteins, total sugars, trehalose, cholesterol, and free amino acids), detoxifying enzymes (cytochrome P450 and glutathione S-transferase), and metabolic enzymes (proteases and phosphofructokinases) in specimens from three populations were compared before and after stress with rotenone at median lethal concentration (LC 50) and their response mechanisms were analyzed. Following a 24 h treatment with rotenone, the average LC 50 rotenone values in A. glycines specimens from field populations A and B, and a laboratory population were 4.39, 4.61, and 4.03 mg/L, respectively. The degree of changes in the kinase expression activity of endogenous substances also differed, which indicated a difference in the response of A. glycines specimens from varying habitats to LC 50 rotenone stress. The content of endogenous substances, detoxifying enzymes, and metabolic enzymes, except for that of free amino acids, changed significantly in all populations treated with rotenone at LC 50 compared with that in the control (P < 0.05). The decrease in protein and trehalose content, and the obstruction of cholesterol transportation owing to decreased feeding in stressed individuals were the causes of A. glycines death after rotenone treatment. Aphis glycines resistance to rotenone may be related to cytochrome P450 expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.