Lithium ion capacitors (LICs) as promising energy storage devices are receiving lots of attention recently. However, anodes with high rate performance are urgently needed to balance the thermodynamics and kinetics...
Aqueous proton batteries/pseudocapacitors are promising candidates for next‐generation electrochemical energy storage. However, their development is impeded by the lack of suitable electrode materials that facilitate rapid transport and storage of protons. Herein, an open‐layered hydrous tungsten oxide (WO3·nH2O) with larger layer spacing from Aurivillius Bi2WO6 via ion etching is proposed. Particularly, the WO3·nH2O electrode possesses a unique multi‐level nanostructure and presents superior rate performance (254 F g−1 at 1000 mV s−1, surpassing most carbon‐based electrode materials known). In situ X‐ray Diffraction combined with crystallography study demonstrate that the open layered structure with negligible structural strain enables fast and reversible (de)intercalation of protons during electrochemical reaction. Furthermore, a full proton pseudocapacitor (Prussian blue analogues//WO3·nH2O) operating in a wide temperature range from −40 to 25 °C is fabricated. This device can deliver 70% of the room‐temperature capacitance and stably cycle with negligible capacitance fading over 5000 cycles even in the solid‐phase electrolyte at −20 °C. This study provides a valuable strategy to design electrode materials with layered structures for the development of high‐performance aqueous proton batteries/pseudocapacitors at low temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.