The xylose operon can be an efficient biological component for regulatory expression uses in Bacillus licheniformis. However, its characteristic susceptibility to carbon catabolite repression (CCR) makes its application inconvenient. In this study, plasmids harboring the wild-type operons from three Bacillus species were constructed and introduced into B. licheniformis. These plasmids ensured secretory expression of maltogenic α-amylase (BLMA) in B. licheniformis under strict regulation. The glucose-mediated CCR was then alleviated by engineering the xylose operon of the expression system. Evidence showed that mutations in the highly conserved nucleotides of the identified catabolite responsive element (cre) consensus sequence prevented association of the regulator CcpA with DNA, thus resulting in an increase in BLMA activity of up to 12-fold. Furthermore, features of this engineered system for inducible expression were investigated. Induction in mid-log phase using 10 g/L xylose at 37 °C was found to be beneficial for promoting the accumulation of recombinant product, and the maximum yield of BlmMA reached 715.4 U/mL. This study contributes to the industrial application of the generally recognized as safe (GRAS) workhorse B. licheniformis.
This work investigated the effects of mixed carbon sources on the monosaccharide composition of exopolysaccharides (EPS) and activity of related enzymes, phosphoglucose isomerase (PGI), aphosphoglucomutase (PGM), phosphomannose isomerase (PMI) and GDP-D-Man pyrophosphorylase (GMP), in the EPS biosynthesis by Ganoderma lucidum. Combinations of two carbon sources, glucose (Glc) + mannose (Man) and Glc + galactose (Gal), were applied at various mass ratios in the liquid culture of G. lucidum. The results showed that Glc, Gal, and Man were the major monosaccharides in G. lucidum EPS, and the combined mole percentages of monosaccharides were >80%, the same as those in the carbon source mixture. Activities of PGI, PMI, and GMP were correlated with Man mole percentage in EPSs and were enhanced by increasing the proportion of Gal for the carbon source Glc + Gal. PGM activity was correlated with Gal mole percentage and was reduced by increasing the Man proportion for Glc + Man. The expression of four genes encoding PGI, PMI, GMP and PGM reached peak levels on day 6 of culture, whereas the enzyme activities increased steadily from day 3 to 8. The monosaccharide composition of G. lucidum EPS for various mixed carbon source conditions thus appeared to be controlled by the translational level of genes encoding PGM, PGI, PMI, and GMP. These findings will be helpful to control the monosaccharide composition for desired biological activity of EPS produced by G. lucidum fermentation.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.