Distribution of SARS-CoV-2 virus and pathological features of multiple organs in COVID-19 patients remains unclear, which interferes with the improvement of COVID-19 diagnosis and treatment. In this article, we summarize the pathological findings obtained from systematic autopsy (37 cases) and percutaneous multiple organ biopsy (“minimally invasive autopsy”, 54 cases). These findings should shed light on better understanding of the progression of COVID-19 infection and the means of more effective intervention.
BackgroundMany cardioprotective pharmacological agents failed to exert their protective effects in diabetic hearts subjected to myocardial ischemia/reperfusion (MI/R). Identify the molecular basis linking diabetes with MI/R injury is scientifically important and may provide effective therapeutic approaches. Dynamin-related protein 1 (Drp1)-mediated mitochondrial fission plays an important role in MI/R injury under non-diabetic conditions. Importantly, recent studies indicated that Drp1-mediated mitochondrial fission is enhanced in the myocardium of diabetic mice. The above evidences suggested that Drp1 may be one critical molecule linking diabetes with MI/R injury. We hypothesized that inhibition of Drp1 may be effective to reduce MI/R injury in diabetic hearts.MethodsHigh-fat diet and streptozotocin-induced diabetic mice were subjected to MI/R or sham operation. Mdivi-1 (1.2 mg/kg), a small molecule inhibitor of Drp1 or vehicle was administrated 15 min before the onset of reperfusion. Outcome measures included mitochondrial morphology, mitochondrial function, myocardial injury, cardiac function and oxidative stress.ResultsMitochondrial fission was significantly increased following MI/R as evidenced by enhanced translocation of Drp1 to mitochondria and decreased mitochondrial size. Delivery of Mdivi-1 into diabetic mice markedly inhibited Drp1 translocation to the mitochondria and reduced mitochondrial fission following MI/R. Inhibition of Drp1 in diabetic hearts improved mitochondrial function and cardiac function following MI/R. Moreover, inhibition of Drp1 reduced myocardial infarct size and serum cardiac troponin I and lactate dehydrogenase activities. These cardioprotective effects were associated with decreased cardiomyocyte apoptosis and malondialdehyde production and increased activities of antioxidant enzyme manganese superoxide dismutase.ConclusionsPharmacological inhibition of Drp1 prevents mitochondrial fission and reduces MI/R injury in diabetic mice. The findings suggest Drp1 may be a potential novel therapeutic target for diabetic cardiac complications.
Microbes play a critical role in soil global biogeochemical circulation and microbe-microbe interactions have also evoked enormous interests in recent years. Utilization of green manures can stimulate microbial activity and affect microbial composition and diversity. However, few studies focus on the microbial interactions or detect the key functional members in communities. With the advances of metagenomic technologies, network analysis has been used as a powerful tool to detect robust interactions between microbial members. Here, random matrix theory-based network analysis was used to investigate the microbial networks in response to four different green manure fertilization regimes (Vicia villosa, common vetch, milk vetch, and radish) over two growth cycles from October 2012 to September 2014. The results showed that the topological properties of microbial networks were dramatically altered by green manure fertilization. Microbial network under milk vetch amendment showed substantially more intense complexity and interactions than other fertilization systems, indicating that milk vetch provided a favorable condition for microbial interactions and niche sharing. The shift of microbial interactions could be attributed to the changes in some major soil traits and the interactions might be correlated to plant growth and production. With the stimuli of green manures, positive interactions predominated the network eventually and the network complexity was in consistency with maize productivity, which suggested that the complex soil microbial networks might benefit to plants rather than simple ones, because complex networks would hold strong the ability to cope with environment changes or suppress soil-borne pathogen infection on plants. In addition, network analyses discerned some putative keystone taxa and seven of them had directly positive interactions with maize yield, which suggested their important roles in maintaining environmental functions and in improving plant growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.