The INADEQUATE experiment can provide unequalled, detailed information about the carbon skeleton of an organic molecule. However, it also has the reputation of requiring unreasonable amounts of sample. Modern spectrometers and probes have mitigated this problem, and it is now possible to get good structural data on a few milligrams of a typical organic small molecule. In this paper, we analyze the experiment step by step in some detail, to show how each part of the sequence can both contribute to maximum overall sensitivity and can lead to artifacts. We illustrate these methods on three molecules: 1-octanol, the steroid 17α-ethynylestradiol and the isoquinoline alkaloid β-hydrastine. In particular, we show that not only is the standard experiment powerful, but also a version tuned to small couplings can contribute vital structural information on long-range connectivities. If the delay in the spin echo is long, pairs of carbons with small couplings can create significant double-quantum coherence and show correlations in the spectrum. These are two-and three-bond correlations in a carbon chain or through a heteroatom in the molecule. All these mean that INADEQUATE can play a viable and important role in routine organic structure determination.
A new package crs is introduced for computing nonparametric regression (and quantile) splines in the presence of both continuous and categorical predictors. B-splines are employed in the regression model for the continuous predictors and kernel weighting is employed for the categorical predictors. We also develop a simple R interface to NOMAD, which is a mixed integer optimization solver used to compute optimal regression spline solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.