The binding specificity was defined of a human ultraviolet light-damaged DNA recognition protein (UV-DRP), the activity of which is absent in some xeroderma pigmentosum complementation group E cells. Our results suggest that cyclobutane pyrimidine dimers (CPDs) are not high affinity UV-DRP binding sites--a finding consistent with other reports on this protein (Hirschfeld et al., (1990) Mol. Cell Biol., 10, 2041-2048). A major role for 6-4 photoproducts in UV-DRP binding was suggested in studies showing that irradiated oligonucleotides containing a T4C UV box sequence, which efficiently forms a TC 6-4 photoproduct, was a superior substrate for the UV-DRP when compared to a similar irradiated oligonucleotide having a T5 sequence. The latter sequence forms CPDs at a much higher frequency than 6-4 photoproducts. In a more direct approach, T4C-containing oligonucleotides complexed with the UV-DRP were separated from the unbound oligonucleotide fraction and the frequencies of 6-4 photoproducts in the two DNA populations were compared. The UV-DRP-bound fraction was highly enriched for the 6-4 lesion over the unbound fraction supporting the conclusion that 6-4 photoproducts are the principal binding cues for the UV-DRP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.