De novo mutations (DNMs) significantly contribute to sporadic diseases, particularly in neuropsychiatric disorders. Whole-exome sequencing (WES) and whole-genome sequencing (WGS) provide effective methods for detecting DNMs and prioritizing candidate genes. However, it remains a challenge for scientists, clinicians, and biologists to conveniently access and analyse data regarding DNMs and candidate genes from scattered publications. To fill the unmet need, we integrated 580 799 DNMs, including 30 060 coding DNMs detected by WES/WGS from 23 951 individuals across 24 phenotypes and prioritized a list of candidate genes with different degrees of statistical evidence, including 346 genes with false discovery rates <0.05. We then developed a database called Gene4Denovo (http://www.genemed.tech/gene4denovo/), which allowed these genetic data to be conveniently catalogued, searched, browsed, and analysed. In addition, Gene4Denovo integrated data from >60 genomic sources to provide comprehensive variant-level and gene-level annotation and information regarding the DNMs and candidate genes. Furthermore, Gene4Denovo provides end-users with limited bioinformatics skills to analyse their own genetic data, perform comprehensive annotation, and prioritize candidate genes using custom parameters. In conclusion, Gene4Denovo conveniently allows for the accelerated interpretation of DNM pathogenicity and the clinical implication of DNMs in humans.
A series of 5-(3-alkyl-1,2,4-oxadiazol-5-yl)-1,4,5,6-tetrahydropyrimidines+ ++ (7a-h) was synthesized for biological evaluation as selective agonists for M1 receptors coupled to phosphoinositide (PI) metabolism in the central nervous system. Each ligand bound with high affinity to muscarinic receptors from rat brain as measured by inhibition of [3H]-(R)-quinuclidinyl benzilate ([3H]-(R)-QNB) binding. 5-(3-Methyl-1,2,4-oxadiazol-5-yl)-1,4,5,6-tetrahydropyrimidine+ ++ trifluoroacetate (CDD-0098-J;7a) displayed high affinity (IC50 = 2.7 +/- 0.69 microM) and efficacy at muscarinic receptors coupled to PI metabolism in the rat cortex and hippocampus. Increasing the length of the alkyl substituent increased affinity for muscarinic receptors yet decreased activity in PI turnover assays. The hippocampal PI response of 7a was blocked by lower concentrations of pirenzepine (8) or by higher concentrations of either AF-DX 116 (9) or p-fluorohexahydrosiladifenidol (10), suggesting that at low concentrations 7a selectively stimulates PI turnover through M1 receptors.
Previous studies identified several novel tetrahydropyrimidine derivatives exhibiting muscarinic agonist activity in rat brain. Such compounds might be useful in treating cognitive and memory deficits associated with low acetylcholine levels, as found in Alzheimer's disease. To determine the molecular features of ligands important for binding and activity at muscarinic receptor subtypes, the series of tetrahydropyrimidines was extended. Several active compounds were examined further for functional selectivity through biochemical studies of muscarinic receptor activity using receptor subtypes expressed in cell lines. Several amidine derivatives displayed high efficacy at m1 receptors and lower activity at m3 receptors coupled to phosphoinositide (PI) metabolism in A9 L cells. Four ligands, including 1b, 1f, 2b, and 7b, exhibited marked functional selectivity for m1 vs m3 receptors. Compound 1f also exhibited low activity at m2 receptors coupled to the inhibition of adenylyl cyclase in A9 L cells. Molecular modeling studies also were initiated to help understand the nature of the interaction of muscarinic agonists with the m1 receptor using a nine amino model of the m1 receptor. Several important interactions were identified, including interactions between the ester moiety and Thr192. Additional interactions were found for oxadiazoles and alkynyl derivatives with Asn382, suggesting that enhanced potency and selectivity may be achieved by maximizing interactions with Asp105, Thr192, and Asn382. Taken together, the data indicate that several amidine derivatives display functional selectivity for m1 muscarinic receptors, warranting further evaluation as therapeutic agents for the treatment of Alzheimer's disease. In addition, several amino acid residues were identified as potential binding sites for m1 agonists. These data may be useful in directing efforts to develop even more selective m1 agonists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.