To date, organic solar cells (OSCs) with the development of photovoltaic materials have realized high power conversion efficiencies (PCEs) through the solution processing strategy with bulk heterojunction (BHJ) structure, but the BHJ morphology is difficult to control in large-scale fabrication of OSCs. Herein, we report an alternative film-forming technology known as layer-bylayer (LbL). As compared to its BHJ counterpart, LbL presents many unique advantages including controllable ''p-i-n'' morphology, good charge transport and extraction properties, and great universality. By using the LbL-bladed coating strategy, a high PCE of 16.35% was achieved in the PM6:Y6 OSCs. Notably, a large-area solar module of 11.52 cm 2 with a geometrical fill factor of over 90% exhibited an outstanding PCE of 11.86%, which represents the highest efficiency of large-area solar modules. The results may pave the way for the fabrication of the photoactive layer in the future industrial production of OSCs.
Asymmetric acceptor BTP-2F-ThCl-based devices gave the best PCE of 17.06% due to the optimal energy levels relative to those of the devices based on their symmetrical counterparts, BTP-4F (16.37%) and BTP-2ThCl (14.49%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.