As an alternative to modern western medicine, Traditional Chinese Medicine (TCM) is receiving increasingly attention worldwide. Great efforts have been paid to TCM’s modernization, which tries to bridge the gap between TCM and modern western medicine. As TCM and modern western medicine share a common aspect at molecular level that the compound(s) perturb human’s dysfunction network and restore human normal physiological condition, the relationship between compounds (in herb, refer to ingredients) and their targets (proteins) should be the key factor to connect TCM and modern medicine. Accordingly, we construct this Traditional Chinese Medicine Integrated Database (TCMID, http://www.megabionet.org/tcmid/), which records TCM-related information collected from different resources and through text-mining method. To enlarge the scope of the TCMID, the data have been linked to common drug and disease databases, including Drugbank, OMIM and PubChem. Currently, our TCMID contains ∼47 000 prescriptions, 8159 herbs, 25 210 compounds, 6828 drugs, 3791 diseases and 17 521 related targets, which is the largest data set for related field. Our web-based software displays a network for integrative relationships between herbs and their treated diseases, the active ingredients and their targets, which will facilitate the study of combination therapy and understanding of the underlying mechanisms for TCM at molecular level.
Subsyndromal symptomatic depression (SSD) is a subtype of subthreshold depressive and also lead to significant psychosocial functional impairment as same as major depressive disorder (MDD). Several studies have suggested that SSD is a transitory phenomena in the depression spectrum and is thus considered a subtype of depression. However, the pathophysioloy of depression remain largely obscure and studies on SSD are limited. The present study compared the expression profile and made the classification with the leukocytes by using whole-genome cRNA microarrays among drug-free first-episode subjects with SSD, MDD, and matched controls (8 subjects in each group). Support vector machines (SVMs) were utilized for training and testing on candidate signature expression profiles from signature selection step. Firstly, we identified 63 differentially expressed SSD signatures in contrast to control (P< = 5.0E-4) and 30 differentially expressed MDD signatures in contrast to control, respectively. Then, 123 gene signatures were identified with significantly differential expression level between SSD and MDD. Secondly, in order to conduct priority selection for biomarkers for SSD and MDD together, we selected top gene signatures from each group of pair-wise comparison results, and merged the signatures together to generate better profiles used for clearly classify SSD and MDD sets in the same time. In details, we tried different combination of signatures from the three pair-wise compartmental results and finally determined 48 gene expression signatures with 100% accuracy. Our finding suggested that SSD and MDD did not exhibit the same expressed genome signature with peripheral blood leukocyte, and blood cell–derived RNA of these 48 gene models may have significant value for performing diagnostic functions and classifying SSD, MDD, and healthy controls.
Our findings suggest that BDNF levels may serve as a potential differential diagnostic biomarker for bipolar disorder in a patient's first depressive episode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.