The optimization of multi-zone residential heating, ventilation, and air conditioning (HVAC) control is not an easy task due to its complex dynamic thermal model and the uncertainty of occupant-driven cooling loads. Deep reinforcement learning (DRL) methods have recently been proposed to address the HVAC control problem. However, the application of single-agent DRL for multi-zone residential HVAC control may lead to non-convergence or slow convergence. In this paper, we propose MAQMC (Multi-Agent deep Q-network for multi-zone residential HVAC Control) to address this challenge with the goal of minimizing energy consumption while maintaining occupants' thermal comfort. MAQMC is divided into MAQMC2 (MAQMC with two agents:one agent controls the temperature of each zone, and the other agent controls the humidity of each zone) and MAQMC3 (MAQMC with three agents:three agents control the temperature and humidity of three zones, respectively). The experimental results show that MAQMC3 can reduce energy consumption by 6.27% and MAQMC2 by 3.73% compared with the xed point; compared with the rule-based, MAQMC3 and MAQMC2 respectively can reduce 61.89% and 59.07% comfort violation. In addition, experiments with di erent regional weather data demonstrate that the well-trained MAQMC RL agents have the robustness and adaptability to unknown environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.