Current recommender systems often take fusion factors into consideration to realize personalize point-of-interest (POI) recommendation. Historical behavior records and location factors are two kinds of significant features in most of recommendation scenarios. However, existing approaches usually use the Euclidean distance directly without considering the traffic factors. Moreover, the timing characteristics of users’ historical behaviors are not fully utilized. In this paper, we took the restaurant recommendation as an example and proposed a personalized POI recommender system integrating the user profile, restaurant characteristics, users’ historical behavior features, and subway network features. Specifically, the subway network features such as the number of passing stations, waiting time, and transfer times are extracted and a recurrent neural network model is employed to model user behaviors. Experiments were conducted on a real-world dataset and results show that the proposed method significantly outperforms the baselines on two metrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.