A comprehensive transcriptomic survey of pigs can provide a mechanistic understanding of tissue specialization processes underlying economically valuable traits and accelerate their use as a biomedical model. Here we characterize four transcript types (lncRNAs, TUCPs, miRNAs, and circRNAs) and protein-coding genes in 31 adult pig tissues and two cell lines. We uncover the transcriptomic variability among 47 skeletal muscles, and six adipose depots linked to their different origins, metabolism, cell composition, physical activity, and mitochondrial pathways. We perform comparative analysis of the transcriptomes of seven tissues from pigs and nine other vertebrates to reveal that evolutionary divergence in transcription potentially contributes to lineage-specific biology. Long-range promoter–enhancer interaction analysis in subcutaneous adipose tissues across species suggests evolutionarily stable transcription patterns likely attributable to redundant enhancers buffering gene expression patterns against perturbations, thereby conferring robustness during speciation. This study can facilitate adoption of the pig as a biomedical model for human biology and disease and uncovers the molecular bases of valuable traits.
Background
eIF2α is a regulatory node that controls protein synthesis initiation by its phosphorylation or dephosphorylation. General control nonderepressible-2 (GCN2), protein kinase R-like endoplasmic reticulum kinase (PERK), double-stranded RNA (dsRNA)-dependent protein kinase (PKR) and heme-regulated inhibitor (HRI) are four kinases that regulate eIF2α phosphorylation.
Main body
In the viral infection process, dsRNA or viral proteins produced by viral proliferation activate different eIF2α kinases, resulting in eIF2α phosphorylation, which hinders ternary tRNAMet-GTP-eIF2 complex formation and inhibits host or viral protein synthesis. The stalled messenger ribonucleoprotein (mRNP) complex aggregates under viral infection stress to form stress granules (SGs), which encapsulate viral RNA and transcription- and translation-related proteins, thereby limiting virus proliferation. However, many viruses have evolved a corresponding escape mechanism to synthesize their own proteins in the event of host protein synthesis shutdown and SG formation caused by eIF2α phosphorylation, and viruses can block the cell replication cycle through the PERK-eIF2α pathway, providing a favorable environment for their own replication. Subsequently, viruses can induce host cell autophagy or apoptosis through the eIF2α-ATF4-CHOP pathway.
Conclusions
This review summarizes the role of eIF2α in viral infection to provide a reference for studying the interactions between viruses and hosts.
The aim of this study was to investigate the possible protective role of sodium selenite on aflatoxin B1-induced oxidative stress and apoptosis in spleen of broilers. Two hundred one-day-old male broilers, divided into five groups, were fed with basal diet (control group), 0.3 mg/kg AFB1 (AFB1 group), 0.3 mg/kg AFB1 + 0.2 mg/kg Se (+Se group I), 0.3 mg/kg AFB1 + 0.4 mg/kg Se (+Se group II) and 0.3 mg/kg AFB1 + 0.6 mg/kg Se (+Se group III), respectively. According to biochemical assays, AFB1 significantly decreased the activities of glutathione peroxidase, total superoxide dismutase, glutathione reductase, catalase and the level of glutathione hormone, while it increased the level of malondialdehyde. Moreover, AFB1 increased the percentage of apoptosis cells by flow cytometry and the occurrence of apoptotic cells by TUNEL assay. Simultaneous supplementation with sodium selenite restored these parameters to be close to those in control group. In conclusion, sodium selenite exhibited protective effects on AFB1-induced splenic toxicity in broilers by inhibiting oxidative stress and excessive apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.