Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly with limited therapeutic options. Here, we report on a study of >12 million variants including 163,714 directly genotyped, most rare, protein-altering variant. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5×10–8) distributed across 34 loci. While wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first signal specific to wet AMD, near MMP9 (difference-P = 4.1×10–10). Very rare coding variants (frequency < 0.1%) in CFH, CFI, and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.
This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
Age-related macular degeneration (AMD) is the most common cause of irreversible vision loss in the developed world and has a strong genetic predisposition. A locus at human chromosome 10q26 affects the risk of AMD, but the precise gene(s) have not been identified. We genotyped 581 AMD cases and 309 normal controls in a Caucasian cohort in Utah. We demonstrate that a single-nucleotide polymorphism, rs11200638, in the promoter region of HTRA1 is the most likely causal variant for AMD at 10q26 and is estimated to confer a population attributable risk of 49.3%. The HTRA1 gene encodes a secreted serine protease. Preliminary analysis of lymphocytes and retinal pigment epithelium from four AMD patients revealed that the risk allele was associated with elevated expression levels of HTRA1 mRNA and protein. We also found that drusen in the eyes of AMD patients were strongly immunolabeled with HTRA1 antibody. Together, these findings support a key role for HTRA1 in AMD susceptibility and identify a potential new pathway for AMD pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.