We propose a new scheme to guide cold atoms (or molecules) using a blue-detuned TE(01) doughnut mode in a hollow metallic waveguide (HMW), and analyze the electromagnetic field distributions of various modes in the HMW. We calculate the optical potentials of the TE(01) doughnut mode for three-level atoms using dressed-atom approach, and find that the optical potential of the TE(01) mode is high enough to guide cold atoms released from a standard magneto-optical trap. Our study shows that when the input laser power is 0.5W and its detuning is 3GHz, the guiding efficiency of cold atoms in the straight HMW with a hollow radius of 15 microm can reach 98%, and this guiding efficiency will be almost unchanged with the change of curvature radius R of the bent HMW as R > 2cm, which is a desirable scheme to do some atom-optics experiments or realize a computer-controlled atom lithography with an arbitrary pattern. We also analyze the losses of the guided atoms in the HMW due to the spontaneous emission and background thermal collisions and briefly discuss some potential applications of our guiding scheme in atom and molecule optics.
shows stronger blue-green emission with broader excitation in near-UV range. Bright blue-green light from the LED means this phosphor can be observed by the naked eye. Hence, it may have an application in near UV LED chips.
In order to understand the pathogenic factors that initiate the processes of Alzheimer's disease (AD), a method of inference of multiple differential modules (iMDM) to conduct analysis was performed on the gene expression profile of AD. A total of 11,089 genes and 588,391 interactions were gained based on the gene expression profile and protein-protein interaction network. Subsequently, three differential co-expression networks (DCNs) were constructed with the same nodes but different interactions, and eight multiple differential modules (M-DMs) were identified. Furthermore, by performing Module Connectivity Dynamic Score to quantify the change in the connectivity of component modules, two M-DMs were identified: Module 1 (P=0.0419) and 2 (P=0.0419; adjusted, P≤0.05). Finally, hub genes of MDH1, NDUFAB1, NDUFB5, DDX1 and MRPS35 were gained via topological analysis conducted on the 2 M-DMs. In conclusion, the method of iMDM was suitable for conducting analysis on AD. By applying iMDM, 2 M-DMs were successfully identified and the MDH1, NDUFAB1, NDUFB5, DDX1 and MRPS35 genes were predicted to be important during the occurrence and development of AD.
We propose a simple approach to realize two-dimensional Floquet topological superfluid by periodically tuning the depth of square optical lattice potentials. We show that the periodic driving can induce topological phase transitions between trivial superfluid and Floquet topological superfluid. For this systems we verify the anomalous bulk-boundary correspondence, namely that the robust chiral Floquet edge states can appear even when the winding number of all the bulk Floquet bands is zero. We establish the existence of two Floquet Majorana zero modes separated in the quasienergy space, with ε0,π = 0,π/T at the topological defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.