Biochar is a carbon-rich solid material derived from the pyrolysis of agricultural and forest residual biomass. Previous studies have shown that biochar is suitable as an adsorbent for soil contaminants such as heavy metals and consequently reduces their bioavailability. However, the long-term effect of different biochars on metal extractability or soil health has not been assessed. Therefore, a 1-year incubation experiment was carried out to investigate the effect of biochar produced from bamboo and rice straw (at temperatures ≥500 °C) on the heavy metal (cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn)) extractability and enzyme activity (urease, catalase, and acid phosphatase) in a contaminated sandy loam paddy soil. Three rates (0, 1, and 5%) and two mesh sizes (<0.25 and <1 mm) of biochar applications were investigated. After incubation, the physicochemical properties, extractable heavy metals, available phosphorus, and enzyme activity of soil samples were analyzed. The results demonstrated that rice straw biochar significantly (P < 0.05) increased the pH, electrical conductivity, and cation exchange capacity of the soil, especially at the 5% application rate. Both bamboo and rice straw biochar significantly (P < 0.05) decreased the concentration of CaCl2-extractable heavy metals as biochar application rate increased. The heavy metal extractability was significantly (P < 0.01) correlated with pH, water-soluble organic carbon, and available phosphorus in soil. The 5% application rate of fine rice straw biochar resulted in the greatest reductions of extractable Cu and Zn, 97.3 and 62.2%, respectively. Both bamboo and rice straw biochar were more effective at decreasing extractable Cu and Pb than removing extractable Cd and Zn from the soil. Urease activity increased by 143 and 107% after the addition of 5% coarse and fine rice straw biochars, respectively. Both bamboo and rice straw biochars significantly (P < 0.05) increased catalase activity but had no significant impact on acid phosphatase activity. In conclusion, the rice straw biochar had greater potential as an amendment for reducing the bioavailability of heavy metals in soil than that of the bamboo biochar. The impact of biochar treatment on heavy metal extractability and enzyme activity varied with the biochar type, application rate, and particle size.
Moso bamboo is recognized as phytoremediation plant due to production of huge biomass and high tolerance in stressed environment. Hydroponics and pot experiments were conducted to investigate mechanism of copper tolerance and to evaluate copper accumulation capacity of Moso bamboo. In hydroponics experiment there was non significant variation in MDA contents of leaves compared with control. SOD and POD initially indicated enhancing trend with application of 5 μM Cu and then decreased consistently with application of 25 and 100 μM Cu. Application of each additional increment of copper have constantly enhanced proline contents while maximum increase of proline was observed with application of 100 μM copper. In pot experiment chlorophyll and biomass initially showed increasing tendency and decreased gradually with application of each additional increment of Cu. Normal growth of Moso bamboo was observed with application of 100 mg kg−1 copper. However, additional application of 300 or 600 mg kg−1 copper had significantly inhibited growth of Moso bamboo. The concentration of Cu in Moso bamboo has attained the levels of 340, 60, 23 mg kg−1 in roots, stems and leaves respectively. The vacuoles were the main organs which accumulated copper and reduced toxicity of copper as studied by TEM-DEX technology.
There is an increasing concern about heavy metal contamination in farmland in China and worldwide. In order to reveal the spatial features of heavy metals in the soil-rice system, soil and rice samples were collected from Nanxun, Southeastern China. Compared with the guideline values, elevated concentrations of heavy metals in soils were observed, while heavy metals in rice still remained at a safe level. Heavy metals in soils and rice had moderate to strong spatial dependence (nugget/sill ratios: 13.2% to 49.9%). The spatial distribution of copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) in soils illustrated that their high concentrations were located in the southeast part. The high concentrations of cadmium (Cd) in soils were observed in the northeast part. The accumulation of all the studied metals is related to the long-term application of agrochemicals and industrial activities. Heavy metals in rice showed different spatial distribution patterns. Cross-correlograms were produced to quantitatively determine the spatial correlation between soil properties and heavy metals composition in rice. The pH and soil organic matter had significant spatial correlations with the concentration of heavy metals in rice. Most of the selected variables had clear spatial correlation ranges for heavy metals in rice, which could be further applied to divide agricultural management zones.
Background Field observations and glasshouse studies have suggested links between boron (B)-deficiency and leaf damage induced by low temperature in crop plants, but causal relationships between these two stresses at physiological, biochemical and molecular levels have yet to be explored. Limited evidence at the whole-plant level suggests that chilling temperature in the root zone restricts B uptake capacity and/or B distribution/utilization efficiency in the shoot, but the nature of this interaction depends on chilling tolerance of species concerned, the mode of low temperature treatment (abrupt versus gradual temperature decline) and growth conditions (e.g. photon flux density and relative humidity) that may exacerbate chilling stress.Scope This review explores roles of B nutrition in chilling tolerance of continual root or transient shoot chills in crop species adapted to warm season conditions. It reviews current research on combined effects of chilling temperature (ranging from >0 to 20 C) and B deficiency on growth and B nutrition responses in crop species differing in chilling tolerance.Conclusion For subtropical/tropical species (e.g. cucumber, cassava, sunflower), root chilling at 10-17 C decreases B uptake efficiency and B utilization in the shoot and increases the shoot : root ratio, but chilling-tolerant temperate species (e.g. oilseed rape, wheat) require much lower root chill temperatures (2-5 C) to achieve the same responses. Boron deficiency exacerbates chilling injuries in leaf tissues, particularly under high photon flux density. Suggested mechanisms for B · chilling interactions in plants are: (a) chilling-induced reduction in plasmalemma hydraulic conductivity, membrane fluidity, water channel activity and root pressure, which contribute to the decrease in root hydraulic conductance, water uptake and associated B uptake; (b) chilling-induced stomatal dysfunction affecting B transport from root to shoot and B partitioning in the shoot; and (c) B deficiency induced sensitivity to photo-oxidative damage in leaf cells. However, specific evidence for each of the mechanisms is still lacking. Impacts of B status on chilling tolerance in crop species have important implications for the management of B supply during sensitive stages of growth, such as early growth after planting and early reproductive development, both of which can coincide with the occurrence of chilling temperatures in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.