Reconstructing shape and reflectance properties from images is a highly under-constrained problem, and has previously been addressed by using specialized hardware to capture calibrated data or by assuming known (or highly constrained) shape or reflectance. In contrast, we demonstrate that we can recover non-Lambertian, spatially-varying BRDFs and complex geometry belonging to any arbitrary shape class, from a single RGB image captured under a combination of unknown environment illumination and flash lighting. We achieve this by training a deep neural network to regress shape and reflectance from the image. Our network is able to address this problem because of three novel contributions: first, we build a large-scale dataset of procedurally generated shapes and real-world complex SVBRDFs that approximate real world appearance well. Second, single image inverse rendering requires reasoning at multiple scales, and we propose a cascade network structure that allows this in a tractable manner. Finally, we incorporate an in-network rendering layer that aids the reconstruction task by handling global illumination effects that are important for real-world scenes. Together, these contributions allow us to tackle the entire inverse rendering problem in a holistic manner and produce state-of-the-art results on both synthetic and real data.
We propose a material acquisition approach to recover the spatially-varying BRDF and normal map of a near-planar surface from a single image captured by a handheld mobile phone camera. Our method images the surface under arbitrary environment lighting with the flash turned on, thereby avoiding shadows while simultaneously capturing highfrequency specular highlights. We train a CNN to regress an SVBRDF and surface normals from this image. Our network is trained using a large-scale SVBRDF dataset and designed to incorporate physical insights for material estimation, including an in-network rendering layer to model appearance and a material classifier to provide additional supervision during training. We refine the results from the network using a dense CRF module whose terms are designed specifically for our task. The framework is trained end-to-end and produces high quality results for a variety of materials. We provide extensive ablation studies to evaluate our network on both synthetic and real data, while demonstrating significant improvements in comparisons with prior works.
In this paper, we present a superpixel segmentation algorithm called linear spectral clustering (LSC), which is capable of producing superpixels with both high boundary adherence and visual compactness for natural images with low computational costs. In LSC, a normalized cuts-based formulation of image segmentation is adopted using a distance metric that measures both the color similarity and the space proximity between image pixels. However, rather than directly using the traditional eigen-based algorithm, we approximate the similarity metric through a deliberately designed kernel function such that pixel values can be explicitly mapped to a high-dimensional feature space. We then apply the conclusion that by appropriately weighting each point in this feature space, the objective functions of the weighted K-means and the normalized cuts share the same optimum points. Consequently, it is possible to optimize the cost function of the normalized cuts by iteratively applying simple K-means clustering in the proposed feature space. LSC possesses linear computational complexity and high memory efficiency, since it avoids both the decomposition of the affinity matrix and the generation of the large kernel matrix. By utilizing the underlying mathematical equivalence between the two types of seemingly different methods, LSC successfully preserves global image structures through efficient local operations. Experimental results show that LSC performs as well as or even better than the state-of-the-art superpixel segmentation algorithms in terms of several commonly used evaluation metrics in image segmentation. The applicability of LSC is further demonstrated in two related computer vision tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.