The prodrug and antedrug concepts, which were developed to overcome the physical and pharmacological shortcomings of various therapeutic classes of agents, employ diametrically different metabolic transformations. The prodrug undergoes a predictable metabolic activation prior to exhibiting its pharmacological effects in a target tissue while the antedrug undergoes metabolic deactivation in the systemic circulation upon leaving a target tissue. An increased therapeutic index is the aspiration for both approaches in designing as well as evaluation criteria. The recent research endeavors of prodrugs include the gene-directed and antibody-directed enzymatic activation of a molecule in a targeted tissue, organ specific delivery, improved bioavailabilities of nucleosides and cellular penetration of nucleotides. As for antedrugs, emphasis in research has been based upon the design and synthesis of systemically inactive molecule by incorporating a metabolically labile functional group into an active molecule.
Benzidine and 12 related aromatic amines have been studied for the effects of substituent groups and pi orbital conjugation on their genotoxicity as measured by their mutagenicity in vitro with Salmonella and by chromosomal aberrations (CA) in vivo in the bone-marrow cells of mice. The in vitro studies indicated increases in mutagenicity with increases in the electron withdrawing ability of para' substituents. Mutagenicity also increases with increased conjugation as shown by the degree of planarity of the biphenyl compounds and by comparing the mutagenicities of biphenyl amines to stilbenes as well as to ethylene bridged diphenyl compounds. The relative in vitro mutagenicity results were not predictive of relative in vivo CA results. The 3 most genotoxic compounds in vivo were the conjugated amines without substituents in the para' position. The CA values for 4-aminostilbene were exceptionally high. These in vivo results indicate increased genotoxicity for benzidine analogs without substitution in the para' position.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.