Optical scatterometry is known as a powerful tool for nanostructure reconstruction due to its advantages of being non-contact, non-destructive, low cost, and easy to integrate. As a typical model-based method, it usually makes use of abundant measured data for structural profile reconstruction, on the other hand, too much redundant information significantly degrades the efficiency in profile reconstruction. We propose a method based on dependence analysis to identify and then eliminate the measurement configurations with redundant information. Our experiments demonstrated the capability of the proposed method in an optimized selection of a subset of measurement wavelengths that contained sufficient information for profile reconstruction and strikingly improved the profile reconstruction efficiency without sacrificing accuracy, compared with the primitive approach, by making use of the whole spectrum.
Nonuniform depolarization properties of
SiO
2
thin film, two-dimensional (2D) Si grating, and three-dimensional Si cylinder grating, were systematically investigated by Lu-Chipman decomposition. We find that introducing surface profiles with dimensions comparable to the detecting wavelengths can lead to obvious nonuniform depolarization, and control of the sample azimuth can manipulate the uniformity of the depolarizer components. The results indicate that the 2D nanostructure shows obvious nonuniform depolarization at 0° and 90° azimuths, while almost uniform depolarization at 45° azimuth. These discovered phenomena may give rise to some potential applications, such as the detection of the existence of nanostructures without a priori information about the sample, and the design of a uniform or nonuniform depolarizer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.