In this paper, we consider flocking of multiagents with nonlinear inner-coupling functions. First, we propose a set of control laws when multi-agents without leader, and the control law acting on each agent relies on functions of the state information. We prove all agent velocities become asymptotically the same and avoidance of collisions between the agents is ensured. Then we present a set of control laws when multi-agents with a virtual leader, and the control law acting on each agent relies on functions of the state information and the external signal. With the control laws, all agents can follow the virtual leader; freedom from collisions between neighboring agents is ensured.
A nonlinear redundant lifting wavelet packet algorithm was put forward in this study. For the node signals to be decomposed in different layers, predicting operators and updating operators with different orders of vanishing moments were chosen to take norm lp of the scale coefficient and wavelet coefficient acquired from decomposition, the predicting operator and updating operator corresponding to the minimal norm value were used as the optimal operators to match the information characteristics of a node. With the problems of frequency alias and band interlacing in the analysis of redundant lifting wavelet packet being investigated, an improved algorithm for decomposition and node single-branch reconstruction was put forward. The normalized energy of the bottommost decomposition node coefficient was calculated, and the node signals with the maximal energy were extracted for demodulation. The roller bearing faults were detected successfully with the improved analysis on nonlinear redundant lifting wavelet packet being applied to the fault diagnosis of the roller bearings of the finishing mills in a plant. This application proved the validity and practicality of this method.
Generative text summary is an important branch of natural language processing. Aiming at the problems of insufficient use of semantic information, insufficient summary precision and the problem of semantics-loss in the current generated text summary method, an enhanced semantic model is proposed based on dual-encoder, which can provide richer semantic information for sequence-to-sequence architecture through dual-encoder. The enhanced attention architecture with dual-channel semantics is optimized, and the empirical distribution and Gain-Benefit gate are built for decoding. In addition, the position embedding and word embedding are merged into the word embedding technology, and the TF-IDF(term frequency-inverse document frequency), part of speech, key score are added to word's feature. Meanwhile, the optimal dimension of word embedding is optimized. This paper aims to optimize the traditional sequence mapping and word feature representation, enhance the model's semantic understanding, and improve the quality of the summary. The LCSTS and SOGOU datasets are used to validate proposed method. The experimental results show that the proposed method can improve the performance of the ROUGE evaluation system by 10-13 percentage points compared with other listed algorithms. We can observe that the semantic understanding of the text summaries is more accurate and the generation effect is better, which has a better application prospect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.