Computational fluid dynamics (CFD) plays an important role in investigating the flow in products. With the help of optimization algorithms, CFD-based optimization is increasingly applied in product development to improve the product design. Even though this approach is becoming increasingly mature, it is faced with the problem that the CFD solver is not able to correctly respond to the design changes under the batch mode, leading to incorrect simulation and optimization results. Besides, there is no work dedicated to dealing with the design points which are physically invalid during the optimization process. In this paper, the intelligent CFD solver is employed to analyze the flow at each design point and to set up the solver with the best fit simulation models. Based on correct simulation results, the physically invalid design points are automatically removed from the design space. Metamodeling is used to process the valid design space with simulation results provided by the intelligent solver and derive the optimum. A prototype system is developed incorporating ANSYS, Python, and MATLAB. The design optimization of a steam control valve is used as the case study to demonstrate how the proposed system works. The optimization is conducted based on the metamodel built by response surface model and radial basis function to verify the effectiveness of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.